Lemmon Proof Sysetm Quick Reference

Chris Holland

July 7, 2023
Version 0.2

Primitive Rules

Name Annotation Rule Rest On
Assumption A Assume any formula, πœ™. itself
Reiteration Reit From πœ™, infer πœ™. whatever πœ™ rests on
Conjunction Introduction (Conjuction) &I/Conj From πœ™ and πœ“, infer πœ™β€Š&β€Šπœ“. whatever πœ™ and πœ“ rest on
Conjunction Elimination (Simplification) &E/Simp From πœ™β€Š&β€Šπœ“, infer either πœ™ or πœ“. whatever πœ™β€Š&β€Šπœ“ rests on
Disjunction Introduction (Addition) ∨I/Add From πœ™, infer either πœ™β€Šβˆ¨β€Šπœ“ or πœ“β€Šβˆ¨β€Šπœ™. whatever πœ™ rests on
Disjunction Elimination (Disjunctive Syllogism) ∨E/DS From πœ™β€Šβˆ¨β€Šπœ“ and πœ™β€™s denial, infer πœ“. From πœ™β€Šβˆ¨β€Šπœ“ and πœ“β€™s denial, infer πœ™.1 whatever πœ™β€Šβˆ¨β€Šπœ“ rests on
Conditional Introduction (Conditional Proof) β†’I/CP From πœ“ and an assumption πœ™, infer πœ™β€Šβ†’β€Šπœ“ discharge πœ™. whatever πœ“ rests on, except the discharged assumption
Conditional Elimination (Modus ponens) β†’E/MP From πœ™ and πœ™β€Šβ†’β€Šπœ“, infer πœ“ whatever πœ“ rests on
Biconditional Introduction β†”οΈŽI From πœ™β€Šβ†’β€Šπœ“ and πœ“β€Šβ†’β€Šπœ™, infer πœ™β€Šβ†”οΈŽβ€Šπœ“. whatever πœ™β€Šβ†’β€Šπœ“ and πœ“β€Šβ†’β€Šπœ™ rest on
Biconditional Elimination β†”οΈŽE From πœ™β€Šβ†”οΈŽβ€Šπœ“, infer πœ™β€Šβ†’β€Šπœ“ or πœ“β€Šβ†’β€Šπœ™. whatever πœ™β€Šβ†”οΈŽβ€Šπœ“ rests on
Negation Introduction Β¬I From πœ“ and Β¬πœ“, discharge any assumption πœ™ and infer Β¬πœ™. whatever πœ“ and Β¬πœ“ rest on, except the discharged assumption
Negation Elimination Β¬E From Β¬Β¬πœ™, infer πœ™. whatever πœ™ rests on
Reductio ad absurdum (Indirect Proof)2 RAA/IP From πœ“ and Β¬πœ“, discharge any assumption πœ™ and infer πœ™β€™s denial. whatever πœ“ and Β¬πœ“ rest on, except the discharged assumption

For detailed explanations and examples, see Lemmon Proof System: Primitive Rules and Example Applications.

Derived Rules

Name Annotation Rule
Double Negation DN Β¬Β¬πœ™ ⊣⊒ πœ™
Redundancy Re (πœ™β€Šβˆ¨β€Šπœ™) ⊣⊒ πœ™
Re (πœ™β€Š&β€Šπœ™) ⊣⊒ πœ™
Commutativity Comm (πœ™β€Š&β€Šπœ“) ⊣⊒ (πœ“β€Š&β€Šπœ™)
Comm (πœ™β€Šβˆ¨β€Šπœ“) ⊣⊒ (πœ“β€Šβˆ¨β€Šπœ™)
Comm (πœ™β€Šβ†”οΈŽβ€Šπœ“) ⊣⊒ (πœ“β€Šβ†”οΈŽβ€Šπœ™)
Associativity Assoc (πœ™β€Š&β€Š(πœ“β€Š&β€Šπœ‹)) ⊣⊒ ((πœ™β€Š&β€Šπœ“)β€Š&β€Šπœ‹)
Assoc (πœ™β€Šβˆ¨β€Š(πœ“β€Šβˆ¨β€Šπœ‹)) ⊣⊒ ((πœ™β€Šβˆ¨β€Šπœ“)β€Šβˆ¨β€Šπœ‹)
Distribution Dist (πœ™β€Š&β€Š(πœ“β€Šβˆ¨β€Šπœ‹)) ⊣⊒ ((πœ™β€Š&β€Šπœ“)β€Šβˆ¨β€Š(πœ™β€Š&β€Šπœ‹))
Dist (πœ™β€Šβˆ¨β€Š(πœ“β€Š&β€Šπœ‹)) ⊣⊒ ((πœ™β€Šβˆ¨β€Šπœ“)β€Š&β€Š(πœ™β€Šβˆ¨β€Šπœ‹))
DeMorgan DM Β¬(πœ™β€Š&β€Šπœ“) ⊣⊒ (Β¬πœ™β€Šβˆ¨β€ŠΒ¬πœ“)
DM Β¬(πœ™β€Šβˆ¨β€Šπœ“) ⊣⊒ (Β¬πœ™β€Š&β€ŠΒ¬πœ“)
DM (πœ™β€Šβˆ¨β€Šπœ“) ⊣⊒ Β¬(Β¬πœ™β€Š&β€ŠΒ¬πœ“)
DM (πœ™β€Š&β€Šπœ“) ⊣⊒ Β¬(Β¬πœ™β€Šβˆ¨β€ŠΒ¬πœ“)
Def. of Conditional β€Šβ†’β€Šdf (Β¬πœ™β€Šβˆ¨β€Šπœ“) ⊣⊒ (πœ™β€Šβ†’β€Šπœ“)
β€Šβ†’β€Šdf (πœ™β€Šβˆ¨β€Šπœ“) ⊣⊒ (Β¬πœ™β€Šβ†’β€Šπœ“)
β€Šβ†’β€Šdf (πœ™β€Šβˆ¨β€Šπœ“) ⊣⊒ (Β¬πœ“β€Šβ†’β€Šπœ™)
β€Šβ†’β€Šdf (πœ™β€Šβˆ¨β€ŠΒ¬πœ“) ⊣⊒ (πœ“β€Šβ†’β€Šπœ™)
True Consequent TC πœ“ ⊒ (πœ™β€Šβ†’β€Šπœ“)
False Antecedent FA Β¬πœ™ ⊒ (πœ™β€Šβ†’β€Šπœ“)
Impossible Antecedent IA (πœ™β€Šβ†’β€Šπœ“), (πœ™β€Šβ†’β€ŠΒ¬πœ“) ⊒ Β¬πœ™
Hypothetical Syllogism HS (πœ™β€Šβ†’β€Šπœ“), (πœ“β€Šβ†’β€Šπœ‹) ⊒ (πœ™β€Šβ†’β€Šπœ‹)
Negated Conditional Β¬β€Šβ†’β€Š Β¬(πœ™β€Šβ†’β€Šπœ“) ⊣⊒ (πœ™β€Š&β€ŠΒ¬πœ“)
Negated Biconditional Β¬β€Šβ†”οΈŽβ€Š Β¬(πœ™β€Šβ†”οΈŽβ€Šπœ“) ⊣⊒ ((πœ™β€Š&β€ŠΒ¬πœ“)β€Šβˆ¨β€Š(Β¬πœ™β€Š&β€Šπœ“))
Conditional Contraposition Con (πœ™β€Šβ†’β€Šπœ“) ⊣⊒ (Β¬πœ“β€Šβ†’β€ŠΒ¬πœ™)
Biconditional Contraposition BiCon (πœ™β€Šβ†”οΈŽβ€Šπœ“) ⊣⊒ (Β¬πœ“β€Šβ†”οΈŽβ€ŠΒ¬πœ™)
Modus Tollens MT (πœ™β€Šβ†’β€Šπœ“), Β¬πœ“ ⊒ Β¬πœ™
MT (Β¬πœ™β€Šβ†’β€Šπœ“), Β¬πœ“ ⊒ πœ™
MT (πœ™β€Šβ†’β€ŠΒ¬πœ“), πœ“ ⊒ Β¬πœ™
MT (Β¬πœ™β€Šβ†’β€ŠΒ¬πœ“), πœ“ ⊒ πœ™
Biconditional Ponens BP (πœ™β€Šβ†”οΈŽβ€Šπœ“), πœ™ ⊒ πœ“
BP (πœ™β€Šβ†”οΈŽβ€Šπœ“), πœ“ ⊒ πœ™
Biconditional Tollens BT (πœ™β€Šβ†”οΈŽβ€Šπœ“), Β¬πœ“ ⊒ Β¬πœ™
BT (πœ™β€Šβ†”οΈŽβ€Šπœ“), Β¬πœ™ ⊒ Β¬πœ“
Import Imp (πœ™β€Šβ†’β€Š(πœ“β€Šβ†’β€Šπœ‹)) ⊒ ((πœ™β€Š&β€Šπœ“)β€Šβ†’β€Šπœ‹)
Export Exp ((πœ™β€Š&β€Šπœ“)β€Šβ†’β€Šπœ‹) ⊒ (πœ™β€Šβ†’β€Š(πœ“β€Šβ†’β€Šπœ‹))
Special Dilemma SpecD (πœ™β€Šβ†’β€Šπœ“), (Β¬πœ™β€Šβ†’β€Šπœ“) ⊒ πœ“
Simple Dilemma SD (πœ™β€Šβˆ¨β€Šπœ“), (πœ™β€Šβ†’β€Šπœ‹), (πœ“β€Šβ†’β€Šπœ‹) ⊒ πœ‹
Complex Dilemma CD (πœ™β€Šβˆ¨β€Šπœ“), (πœ™β€Šβ†’β€Šπœ‹), (πœ“β€Šβ†’β€ŠπœŽ) ⊒ (πœ‹β€Šβˆ¨β€ŠπœŽ)
Ex Falso Quodlibet EFQ πœ™, Β¬πœ™ ⊒ πœ“

Β  β€― Β β€―β€―


  1. A negated formula, Β¬πœ™, has two denials, πœ™ and Β¬Β¬πœ™. All other formulas have only one denialβ€”namely, their negation. For example, the formula β€œΒ¬P” has two denials β€œP” and β€œΒ¬Β¬P” but formula β€œQ” has one denial β€œΒ¬Q.β€β†©οΈŽ

  2. Reductio ad absurdum (RAA) (also called Indirect Proof (IP)) is similar to Negation introduction (Β¬I). In fact, some books equate Β¬I with RAA. The difference is subtle. RAA and IP allow you assume Β¬πœ™ to infer πœ™; Β¬I does not. Negation introduction always introduces β€œΒ¬β€ and never eliminates it.β†©οΈŽ