Lemmon Proof System

Primitive Rules and Examples

Chris Holland

July 23, 2023
Version 1.1.2

Created for the SLUโ€™s 2023 Summer Logic Reading Group, this webpage is a supplement to Tim Eshingโ€™s inference rule handout. I have also posted a quick reference here. It is a work in progress and will be updated periodically. Please submit corrections and suggestions via the Logic Reading Group Discord forum.

Click on a heading to expand the content. Click the heading again to fold the content. When you hover your cursor over a proof the line under the cursor will highlight. Click once to keep the line highlighted. Clicking on a highlighted line will clear all highlights. Use this feature to check annotations numbers.

Preface

This webpage provides instructions for using the Lemmon System. The instructions are written in English, but also employ several metavariable types. The following key may be helpful.

Metavariable type Represented by
Formula lowercase italic Greek letters: ๐œ™, ๐œ“, ๐œŒ, and ๐œŽ
Line number lowercase italic letters: ๐‘–, ๐‘—, ๐‘˜, ๐‘™, ๐‘š, and ๐‘›
Assumption set capital double stroke Roman letters: ๐”ธ and ๐”น
Assumption set member lowercase italic letters: ๐‘Ž, ๐‘, ๐‘, and ๐‘‘

I also make use of some set theoretical notation.

A set is an unordered collection of set member. The members of a set are represented by names. The set members of a Lemmon proof assumption set are typically named with arabic numbers. A Lemmon assumption set is written by listing names of it set members. The names are separated by commas and enclosed in curly brackets. For example:

{1, 2, 3}.

Order and repetition are irrelevant.

{1, 2, 3} = {2, 1, 3} = {1, 2, 2, 1, 3}

I will use the lowercase italic letters ๐‘Žโ€“๐‘‘ as metavariables for assumption set members and the capital double stroke Roman letters ๐”ธ and ๐”น as metavariables for sets. This will allow me to state the Lemmon rules without referring to specific sets or set members. The Lemmon proof rules require two set operations: union and difference.

The union of two sets is represented by placing the sets in parenthesis and separating them with the symbol โ€œโˆชโ€.

({๐‘Ž, ๐‘} โˆช {๐‘, ๐‘‘})

(๐”ธ โˆช ๐”น)

The outer most parenthesis may be dropped for readability.

{๐‘Ž, ๐‘} โˆช {๐‘, ๐‘‘}

๐”ธ โˆช ๐”น

The union of a set ๐”ธ and a set ๐”น includes every member of set ๐”ธ and every member of set ๐”น.

{1} โˆช {2} = {1, 2}

{1, 3} โˆช {2, 3, 4} = {1, 2, 3, 4}

{1, 2, 3} โˆช {3, 4} = {1, 2, 3, 4}

The union operation is used by most Lemmon inference rules.

Next we have the difference operation. We represent the difference of two sets by placing them in parenthesis and separating them with the symbol โ€œโˆชโ€.

({๐‘Ž, ๐‘} โˆ’ {๐‘, ๐‘‘})

(๐”ธ โˆ’ ๐”น)

Again, the outer most parenthesis may be dropped for readability.

{๐‘Ž, ๐‘} โˆ’ {๐‘, ๐‘‘}

๐”ธ โˆ’ ๐”น

The difference of a set ๐”ธ and a set ๐”น includes every member of ๐”ธ that is not a member of ๐”น.

{1, 2} โˆ’ {2} = {1}

{1, 3} โˆ’ {2, 3} = {1}

{1, 2, 3} โˆ’ {1, 2, 3, 4, 5} = {}

In the last example the resulting set has no members. In place of {}, we can use the empty set symbol โ€œโˆ…โ€.

The Lemmon proof system uses the difference operation to discharge assumptions. The Lemmon rules for conditional introduction, negation introduction, and indirect proof all use the difference operation.

Accurate set notation requires that we enclose set members in brackets; however, this convention is typically relaxed when writing the assumption set on a Lemon proof line.

Primitive Rules

Once you work through the rule definitions and examples below, consult Tim Eshingโ€™s inference rule handout or my Lemmon System quick reference.

Assumption (A)

Add any formula ๐œ™ to a new line ๐‘› and add a new assumption name ๐‘Ž to its assumption set (๐‘Ž should be the only element in the set). Annotate the line with โ€œA.โ€

Assumption (A)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘›. ๐œ™ A

Use this rule to add the premises of a sequent to your proof.

For example:

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠR) โŠข R
Assumption Set Line # Formula Annotation
โžค1 1. Pโ€Šโˆจโ€ŠQ A
โžค2 2. Pโ€Šโ†’โ€ŠQ A
โžค3 3. Qโ€Šโ†’โ€ŠR A
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

You can also use this rule to introduce an assumption for โ†’I or ยฌI. Note this in the annotation.

Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. Pโ€Šโ†’โ€ŠQ A
3 3. Qโ€Šโ†’โ€ŠR A
โžค4 4. ยฌR A for ยฌI
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Reiteration (R)

Reiterate any formula ๐œ™ from a previous line ๐‘š. The new line ๐‘› will use the same assumption set as line ๐‘š. Annotate the line with โ€œReitโ€ and cite line ๐‘š.

Reiteration
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™ A
๐”ธ ๐‘›. ๐œ™ Reit ๐‘š

For example:

โŠข Pโ€Šโ†’โ€ŠP
Assumption Set Line # Formula Annotation
1 1. P A for โ†’I
โžค1 2. P Reit 1
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Conjunction Introduction (&I) / Conjunction (Conj)

Given any formula ๐œ™ on a line ๐‘™ resting on assumption set ๐”ธ and any formula ๐œ“ on a line ๐‘š resting on assumption set ๐”น, add ๐œ™โ€Š&โ€Š๐œ“ to a new line ๐‘›. Line ๐‘› will rest on ๐”ธ โˆช ๐”น. Annotate the line with โ€œ&Iโ€ and cite lines ๐‘™ and ๐‘š.

Conjunction Introduction (&I)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™
๐”น ๐‘š. ๐œ“
๐”ธ โˆช ๐”น ๐‘›. ๐œ™โ€Š&โ€Š๐œ“ &I ๐‘™, ๐‘š

For example:

((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR))
Assumption Set Line # Formula Annotation
1 1 (Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR A
2 2 P A for โ†’I
3 3 Q A for โ†’I
โžค2, 3 4 Pโ€Š&โ€ŠQ &I 2, 3
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Conjunction Elimination (&E)

Given a formula ๐œ™โ€Š&โ€Š๐œ“ on a line ๐‘š, add either ๐œ™ or ๐œ“, to a new line ๐‘›. Line ๐‘› will use the same assumption set as line ๐‘š. Annotate the line with โ€œ&Eโ€ and cite line ๐‘š.

Conjunction Elimination (&E)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Š&โ€Š๐œ“
๐”ธ ๐‘›. ๐œ™ &E ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Š&โ€Š๐œ“
๐”ธ ๐‘›. ๐œ“ &E ๐‘š

For example:

(Pโ€Š&โ€ŠQ) โŠข (Qโ€Š&โ€ŠP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠQ A
โžค1 2. P &E 1
โžค1 3. Q &E 1
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Disjunction Introduction (โˆจI) / Addition (Add)

Given a formula ๐œ™ on a line ๐‘š, add ether ๐œ™โ€Šโˆจโ€Š๐œ“ or ๐œ“โ€Šโˆจโ€Š๐œ™ to a new line ๐‘›. Line ๐‘› will use the same assumption set as line ๐‘š. Annotate the line with โ€œโˆจIโ€ and cite line ๐‘š.

Disjunction Introduction (โˆจI)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™
๐”ธ ๐‘›. ๐œ™โ€Šโˆจโ€Š๐œ“ โˆจI ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™
๐”ธ ๐‘›. ๐œ™โ€Šโˆจโ€Š๐œ“ โˆจI ๐‘š

For example:

ยฌ(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌPโ€Š&โ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(Pโ€Šโˆจโ€ŠQ) A
2 2. P A for ยฌI
โžค2 3. Pโ€Šโˆจโ€ŠQ โˆจI 2
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Disjunction Elimination (โˆจE) / Disjunctive Syllogism (DS)

Given a formula ๐œ™โ€Šโˆจโ€Š๐œ“ on a line ๐‘™ resting on assumption set ๐”ธ and the denial of ๐œ™ on a line ๐‘š resting on assumption set ๐”น, add ๐œ“ to a new line ๐‘›. Alternatively, given a formula ๐œ™โ€Šโˆจโ€Š๐œ“ on a line ๐‘™ resting on assumption set ๐”น and the denial of ๐œ“ on a line ๐‘š resting on assumption set ๐”น, add ๐œ™ to a new line ๐‘›. Line ๐‘› will rest on the assumption set ๐”ธ โˆช ๐”น. Annotate line ๐‘› with โ€œโˆจEโ€ and cite lines ๐‘™ and ๐‘š.

Disjunction Elimination (โˆจE)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโˆจโ€Š๐œ“
๐”น ๐‘š. ยฌ๐œ™
๐”ธ โˆช ๐”น ๐‘›. ๐œ“ โˆจE ๐‘™, ๐‘š

Alternatively,

Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโˆจโ€Š๐œ“
๐”น ๐‘š. ยฌ๐œ“
๐”ธ โˆช ๐”น ๐‘›. ๐œ™ โˆจE ๐‘™, ๐‘š

Since a negated formula ยฌ๐œ™ has two denial, ๐œ™ and ยฌยฌ๐œ™, the rule also permits

Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ยฌ๐œ™โ€Šโˆจโ€Š๐œ“
๐”น ๐‘š. ๐œ™
๐”ธ โˆช ๐”น ๐‘›. ๐œ“ โˆจE ๐‘™, ๐‘š

and

Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโˆจโ€Šยฌ๐œ“
๐”น ๐‘š. ๐œ“
๐”ธ โˆช ๐”น ๐‘›. ๐œ™ โˆจE ๐‘™, ๐‘š

For example:

((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR) โŠข (Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR))
Assumption Set Line # Formula Annotation
1 1. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR A
2 2. ยฌ(Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR)) A for ยฌI
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ
2 7. ยฌR &E 5
2 8. ยฌP &E 3
โžค1, 2 9. Pโ€Šโˆจโ€ŠQ โˆจE 1, 7
โžค1, 2 10. Q โˆจE 8, 9
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Another example:

(Pโ€Š&โ€ŠQ) โŠข ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠQ A
1 2. P &E 1
1 3. Q &E 1
4* 4. ยฌPโ€Šโˆจโ€ŠยฌQ A
โžค1, 4 5. ยฌQ โˆจE 2, 4
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

*Note that the assumption name โ€œ4โ€ was introduced on line 4. The new name could have been any name but โ€œ1,โ€ since โ€œ1โ€ has already been used. Some logicians prefer sequential names, which keeps track of the total number of assumptions in the proof. Tim and I prefer that name match the line number on which the assumption was introduced. This makes the assumption easier to located when it is time to discharge the assumption. Another option is to name assumptoins with lowercase letters. Assumption names are not line numbers, so the lowercase letters emphasize the distinction.

Conditional Introduction (โ†’I) / Conditional Proof (CP)

Given a formula ๐œ™ that was introduced as assumption ๐‘Ž on line ๐‘™ and a formula ๐œ“ on line ๐‘š resting on the assumption set ๐”ธ, add ๐œ™โ€Šโ†’โ€Š๐œ“ to a new line ๐‘›. Line ๐‘› will rest on the assumption set ๐”ธ โˆ’ {๐‘Ž}. (This will โ€œdischargeโ€ assumption ๐‘Ž.) Annotate the line with โ€œโ†’Iโ€ followed by the assumption name ๐‘Ž in parenthesis and cite line ๐‘š.

Conditional Introduction (โ†’I)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘™. ๐œ™ A for โ†’I
๐”ธ ๐‘š. ๐œ“
๐”ธ โˆ’ {๐‘Ž} ๐‘›. ๐œ™โ€Šโ†’โ€Š๐œ“ โ†’I(๐‘™) ๐‘š

For example:

((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR))
Assumption Set Line # Formula Annotation
1 1 (Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR A
2 2 P A for โ†’I
3 3 Q A for โ†’I
2, 3 4 Pโ€Š&โ€ŠQ &I 2, 3
1, 2, 3 5 R โ†’E 1, 4
โžค1, 2 6 Qโ€Šโ†’โ€ŠR โ†’I(3) 3, 5
โžค1 7 Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR) โ†’I(2) 2, 6

If you discharge all the assumptions for a formula, place the empty set symbol โ€œโˆ…โ€ in the assumption set column for the new line. If a formula rest on the assumption set โˆ… it is a theorem.

โˆ… โŠข Pโ€Šโ†’โ€ŠP
Assumption Set Line # Formula Annotation
1 1. P A for โ†’I
1 2. P Reit 1
โˆ… 3. Pโ€Šโ†’โ€ŠP โ†’I(1) 2

Conditional Elimination (โ†’E) / Modus ponens (MP)

Given a formula ๐œ™ on a line ๐‘™ resting on assumption set ๐”ธ and formula ๐œ™โ€Šโ†’โ€Š๐œ“ on a line ๐‘š resting on assumption set ๐”น, add ๐œ“ to a new line ๐‘›. Line ๐‘› will rest on the assumption set ๐”ธ โˆช ๐”น. Annotate line ๐‘› with โ€œโ†’Eโ€ and cite lines ๐‘™ and ๐‘š.

Conditional Elimination (โ†’E)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™ A
๐”น ๐‘š. ๐œ™โ€Šโ†’โ€Š๐œ“ A
๐”ธ โˆช ๐”น ๐‘›. ๐œ“ โ†’E ๐‘™, ๐‘š

For example:

Pโ€Šโ†’โ€ŠQ, P โŠข Q
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. P A
โžค1, 2 3. Q โ†’E 1, 2

Biconditional Introduction (โ†”๏ธŽI)

Given a formula ๐œ™โ€Šโ†’โ€Š๐œ“ on a line ๐‘™ resting on assumption set ๐”ธ and a formula ๐œ“โ€Šโ†’โ€Š๐œ™ on a line ๐‘š resting on assumption set ๐”น, add ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“ to a new line ๐‘›. Line ๐‘› will rest on ๐”ธ โˆช ๐”น. Annotate line ๐‘› with โ€œโ†”๏ธŽIโ€ and cite lines ๐‘™ and ๐‘š.

Biconditional Introduction (โ†”๏ธŽI)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโ†’โ€Š๐œ“ A
๐”น ๐‘š. ๐œ“โ€Šโ†’โ€Š๐œ™ A
๐”ธ โˆช ๐”น ๐‘›. ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“ โ†”๏ธŽI ๐‘™, ๐‘š

For example:

Pโ€Šโ†’โ€ŠQ, Qโ€Šโ†’โ€ŠP โŠข Pโ€Šโ†”๏ธŽโ€ŠQ
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. Qโ€Šโ†’โ€ŠP A
3 3. Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 1, 2

Biconditional Elimination (โ†”๏ธŽE)

Given a formula ๐œ™โ†”๏ธŽ๐œ“ on a line ๐‘š, add ๐œ™โ€Šโ†’โ€Š๐œ“ or ๐œ“โ€Šโ†’โ€Š๐œ™ to a new line ๐‘›. Line ๐‘› will rest on the same assumption set as ๐‘š. Annotate line ๐‘› with โ€œโ†”๏ธŽEโ€ and cite line ๐‘š.

Biconditional Elimination (โ†”๏ธŽE)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“
๐”ธ ๐‘›. ๐œ™โ€Šโ†’โ€Š๐œ“ โ†”๏ธŽE ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“
๐”ธ ๐‘›. ๐œ“โ€Šโ†’โ€Š๐œ™ โ†”๏ธŽE ๐‘š

For example:

Pโ€Šโ†”๏ธŽโ€ŠQ โŠข Pโ€Šโ†’โ€ŠQ
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
1 2. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1

Negation Introduction (ยฌI)

Given

add ยฌ๐œ™ to a new line ๐‘›. Line ๐‘› will rest on all the assumptions from lines ๐‘™ and ๐‘š, except ๐‘Ž (i.e., (๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž}). (Again, this is called discharging an assumption.) Annotate the line with โ€œโ†’Iโ€ followed by the assumption name ๐‘Ž in parenthesis and cite lines ๐‘™ and ๐‘˜.

Negation Introduction (ยฌI)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘˜. ๐œ™ A for ยฌI
๐”ธ ๐‘™. ๐œ“
๐”น ๐‘š. ยฌ๐œ“
(๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž} ๐‘›. ยฌ๐œ™ ยฌI(๐‘Ž) ๐‘™, ๐‘š

For example:

(Pโ€Šโ†’โ€ŠQ), ยฌQ โŠข ยฌP
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. ยฌQ A
3 3. P A for ยฌI
1, 3 4. Q โ†’E 1, 3
โžค1, 2 5. ยฌP ยฌI(3) 2, 4

Another example:

(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for ยฌI
1, 2 3. P โˆจE 1, 2
โžค1 4. ยฌยฌP ยฌI(2) 2, 3
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Negation Elimination (ยฌE)

Given a formula ยฌยฌ๐œ™ on a line ๐‘š resting on assumption set ๐”ธ, add ๐œ™ to a line ๐‘›. Line ๐‘› will rest assumption set ๐”ธ. Annotate line ๐‘› with โ€œยฌEโ€ and cite line ๐‘š.

Negation Elimination (ยฌE)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ยฌยฌ๐œ™
๐”ธ ๐‘›. ๐œ™ ยฌE ๐‘›

For example:

(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for ยฌI
1, 2 3. P โˆจE 1, 2
1 4. ยฌยฌP ยฌI(2) 2, 3
โžค1 5. P ยฌE 4

Reductio ad absurdum (RAA) / Indirect Proof (IP)

Given

add ๐œ™โ€™s denial to a new line ๐‘›. Line ๐‘› will rest on all the assumptions from lines ๐‘™ and ๐‘š, except ๐‘Ž (i.e., (๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž}). Annotate the line with โ€œRAAโ€ or โ€œIPโ€ followed by the assumption name ๐‘Ž in parenthesis and cite lines ๐‘™ and ๐‘˜.

Reductio ad absurdum (RAA) / Indirect Proof (IP)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘˜. ๐œ™ A for RAA
๐”ธ ๐‘™. ๐œ“
๐”น ๐‘š. ยฌ๐œ“
(๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž} ๐‘›. ยฌ๐œ™ RAA(๐‘Ž) ๐‘™, ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘˜. ยฌ๐œ™ A for RAA
๐”ธ ๐‘™. ๐œ“
๐”น ๐‘š. ยฌ๐œ“
(๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž} ๐‘›. ๐œ™ RAA(๐‘Ž) ๐‘™, ๐‘š

For example:

(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for RAA
1, 2 3. P โˆจE 1, 2
โžค1 4. P RAA(2) 2, 3

Lemmonโ€“Fitch Comparison

Since many of us learned logic using the Fitch Proof system, this section compares Lemmon and Fitch style proofs. Lemmon proofs use the primitive rules above. Fitch proofs use the rules from chapter 16 of forall๐‘ฅ: Calgary (Fall 2021+).

(ยฌPโ€Šโˆจโ€ŠQ) โŠข (Pโ€Šโ†’โ€ŠQ)

(ยฌPโ€Šโˆจโ€ŠQ) โŠข (Pโ€Šโ†’โ€ŠQ)
1 1. ยฌPโ€Šโˆจโ€ŠQ A
2 2. P A for โ†’I
1, 2 3. Q โˆจE 1, 2
1 4. Pโ€Šโ†’โ€ŠQ โ†’I(2) 2, 3
(ยฌPโ€Šโˆจโ€ŠQ) โŠข (Pโ€Šโ†’โ€ŠQ)
1ยฌPโ€Šโˆจโ€ŠQ
2P
3Q โˆจE 1, 2
4Pโ€Šโ†’โ€ŠQ โ†’I 2โ€“3

(Pโ€Šโˆจโ€ŠQ) โŠข (Qโ€Šโˆจโ€ŠP)

(Pโ€Šโˆจโ€ŠQ) โŠข (Qโ€Šโˆจโ€ŠP)
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. ยฌ(Qโ€Šโˆจโ€ŠP) A for RAA
3 3. P A for ยฌI
3 4. Qโ€Šโˆจโ€ŠP โˆจI 3
2 5. ยฌP ยฌI(3) 2, 4
1, 2 6. Q โˆจE 1, 5
1, 2 7. Qโ€Šโˆจโ€ŠP โˆจI 6
1 8. Qโ€Šโˆจโ€ŠP RAA(2) 2, 7
(Pโ€Šโˆจโ€ŠQ) โŠข (Qโ€Šโˆจโ€ŠP)
1Pโ€Šโˆจโ€ŠQ
2P
3Qโ€Šโˆจโ€ŠP โˆจI 2
4Q
5Qโ€Šโˆจโ€ŠP โˆจI 4
6Qโ€Šโˆจโ€ŠP โˆจE 1, 2โ€“3, 4โ€“5

(Pโ€Šโˆจโ€ŠP) โŠข P

(Pโ€Šโˆจโ€ŠP) โŠข P
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for RAA
1, 2 3. P โˆจE 1, 2
1 4. P RAA(2) 2, 3
(Pโ€Šโˆจโ€ŠP) โŠข P
1Pโ€Šโˆจโ€ŠP
2P
3P Reit 2
4Pโ€Šโˆจโ€ŠP โˆจE 1, 2โ€“3, 2โ€“3

ยฌ(Pโ€Š&โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠยฌQ)

ยฌ(Pโ€Š&โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠยฌQ)
1 1. ยฌ(Pโ€Š&โ€ŠQ) A
2 2. P A for ยฌI
3 3. Q A for ยฌI
2, 3 4. Pโ€Š&โ€ŠQ &I 2, 3
1, 3 5. ยฌQ ยฌE(2) 1, 4
1 6. ยฌP ยฌE(3) 3, 5
1 7. ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 6
ยฌ(Pโ€Š&โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠยฌQ)
1ยฌ(Pโ€Š&โ€ŠQ)
2P
3Q
4Pโ€Š&โ€ŠQ &I 2, 3
5โŠฅ ยฌE 1, 4
6ยฌQ ยฌI 3โ€“6
7โŠฅ ยฌE 3, 6
8ยฌP IP 2โ€“7
9ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 8

ยฌ(ยฌPโ€Š&โ€ŠยฌQ) โŠข (Pโ€Šโˆจโ€ŠQ)

ยฌ(ยฌPโ€Š&โ€ŠยฌQ) โŠข (Pโ€Šโˆจโ€ŠQ)
1 1. ยฌ(ยฌPโ€Š&โ€ŠยฌQ) A
2 2. ยฌ(Pโ€Šโˆจโ€ŠQ) A for RAA
3 3. P A for ยฌI
3 4. Pโ€Šโˆจโ€ŠQ โˆจI 3
2 5. ยฌP ยฌI(3) 2, 4
6 6. Q A for RAA
6 7. Pโ€Šโˆจโ€ŠQ โˆจI 6
2 8. ยฌQ ยฌI(6) 2, 7
2 10. ยฌPโ€Š&โ€ŠยฌQ &I 5, 8
1 12. Pโ€Šโˆจโ€ŠQ RAA(2) 1, 10
ยฌ(ยฌPโ€Š&โ€ŠยฌQ) โŠข (Pโ€Šโˆจโ€ŠQ)
1ยฌ(ยฌPโ€Š&โ€ŠยฌQ)
2ยฌ(Pโ€Šโˆจโ€ŠQ)
3P
4Pโ€Šโˆจโ€ŠQ โˆจI 3
5โŠฅ ยฌE 2, 4
6ยฌP ยฌI 3โ€“5
7Q
8Pโ€Šโˆจโ€ŠQ โˆจI 7
9โŠฅ ยฌE 2, 8
10ยฌQ ยฌI 7โ€“9
11ยฌPโ€Š&โ€ŠยฌQ &I 6, 10
12โŠฅ ยฌE 1, 11
13Pโ€Šโˆจโ€ŠQ IP 2โ€“12

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠS) โŠข (Rโ€Šโˆจโ€ŠS)

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠS) โŠข (Rโ€Šโˆจโ€ŠS)
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. Pโ€Šโ†’โ€ŠR A
3 3. Qโ€Šโ†’โ€ŠS A
4 4. ยฌ(Rโ€Šโˆจโ€ŠS) A for RAA
5 5. P A for ยฌI
2, 5 6. R โ†’E 2, 5
2, 5 7. Rโ€Šโˆจโ€ŠS โˆจI 6
2, 4 8. ยฌP ยฌI(5) 4, 7
1, 2, 4 9. Q โˆจE 1, 8
1, 2, 3, 4 10. S โ†’E 3, 9
1, 2, 3, 4 11. Rโ€Šโˆจโ€ŠS โˆจI 10
1, 2, 3 12. Rโ€Šโˆจโ€ŠS RAA(4) 4, 11
(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠS) โŠข (Rโ€Šโˆจโ€ŠS)
1Pโ€Šโˆจโ€ŠQ
2Pโ€Šโ†’โ€ŠR
3Qโ€Šโ†’โ€ŠS
4P
5R โ†’E 2, 4
6Rโ€Šโˆจโ€ŠS โˆจI 5
7Q
8S โ†’E 3, 7
9Rโ€Šโˆจโ€ŠS โˆจI 8
10Rโ€Šโˆจโ€ŠS โˆจE 1, 4โ€“6, 7โ€“8

(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (Qโ€Šโ†”๏ธŽโ€ŠP)

(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (Qโ€Šโ†”๏ธŽโ€ŠP)
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
1 2. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1
1 3. Qโ€Šโ†’โ€ŠP โ†”๏ธŽE 1
1 4. Qโ€Šโ†”๏ธŽโ€ŠP โ†”๏ธŽI 2, 3
(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (Qโ€Šโ†”๏ธŽโ€ŠP)
1Pโ€Šโ†”๏ธŽโ€ŠQ
2P
3Q โ†”๏ธŽE 1
4Q
5P โ†”๏ธŽE 1
6Qโ€Šโ†”๏ธŽโ€ŠP โ†”๏ธŽI 2โ€“3, 4โ€“5

((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) โŠข (Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))

((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)) โŠข (Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))
1 1. (Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) A
1 2. Pโ€Šโˆจโ€ŠQ &E 1
1 3. Pโ€Šโˆจโ€ŠR &E 1
4 4. ยฌ(Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR)) A for RAA
5 5. P A for ยฌI
5 6. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 5
4 7. ยฌP ยฌI(5) 4, 6
1, 4 8. Q โˆจE 2, 7
1, 4 9. R โˆจE 3, 7
1, 4 10. Qโ€Š&โ€ŠR &I 8, 9
1, 4 11. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 10
1 12. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) RAA(4) 4, 11
((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)) โŠข (Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))
1(Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)
2Pโ€Šโˆจโ€ŠQ &E 1
3Pโ€Šโˆจโ€ŠR &E 1
4ยฌ(Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))
5P
6Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 5
7โŠฅ ยฌE 4, 6
8Q X 7
9R X 7
10Q
11Q Reit 10
12Q โˆจE 2, 5โ€“8, 10โ€“11
13R
14R Reit 13
15R โˆจE 3, 5โ€“9, 13โ€“14
16Qโ€Š&โ€ŠR &I 12, 15
17Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 16
18โŠฅ ยฌE 4, 17
19Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) IP 4โ€“18