Lemmon Proof System

Chris Holland

July 23, 2023
Version 1.1.2

Created for the SLUโ€™s 2023 Summer Logic Reading Group, this webpage is a supplement to Tim Eshingโ€™s inference rule handout. I have also posted a quick reference here. It is a work in progress and will be updated periodically. Please submit corrections and suggestions via the Logic Reading Group Discord forum.

Click on a heading to expand the content. Click the heading again to fold the content. When you hover your cursor over a proof the line under the cursor will highlight. Click once to keep the line highlighted. Clicking on a highlighted line will clear all highlights. Use this feature to check annotations numbers.

Preface

This webpage provides instructions for using the Lemmon System. The instructions are written in English, but also employ several metavariable types. The following key may be helpful.

Metavariable type Represented by
Formula lowercase italic Greek letters: ๐œ™, ๐œ“, ๐œŒ, and ๐œŽ
Line number lowercase italic letters: ๐‘–, ๐‘—, ๐‘˜, ๐‘™, ๐‘š, and ๐‘›
Assumption set capital double stroke Roman letters: ๐”ธ and ๐”น
Assumption set member lowercase italic letters: ๐‘Ž, ๐‘, ๐‘, and ๐‘‘

I also make use of some set theoretical notation.

A set is an unordered collection of set member. The members of a set are represented by names. The set members of a Lemmon proof assumption set are typically named with arabic numbers. A Lemmon assumption set is written by listing names of it set members. The names are separated by commas and enclosed in curly brackets. For example:

{1, 2, 3}.

Order and repetition are irrelevant.

{1, 2, 3} = {2, 1, 3} = {1, 2, 2, 1, 3}

I will use the lowercase italic letters ๐‘Žโ€“๐‘‘ as metavariables for assumption set members and the capital double stroke Roman letters ๐”ธ and ๐”น as metavariables for sets. This will allow me to state the Lemmon rules without referring to specific sets or set members. The Lemmon proof rules require two set operations: union and difference.

The union of two sets is represented by placing the sets in parenthesis and separating them with the symbol โ€œโˆชโ€.

({๐‘Ž, ๐‘} โˆช {๐‘, ๐‘‘})

(๐”ธ โˆช ๐”น)

The outer most parenthesis may be dropped for readability.

{๐‘Ž, ๐‘} โˆช {๐‘, ๐‘‘}

๐”ธ โˆช ๐”น

The union of a set ๐”ธ and a set ๐”น includes every member of set ๐”ธ and every member of set ๐”น.

{1} โˆช {2} = {1, 2}

{1, 3} โˆช {2, 3, 4} = {1, 2, 3, 4}

{1, 2, 3} โˆช {3, 4} = {1, 2, 3, 4}

The union operation is used by most Lemmon inference rules.

Next we have the difference operation. We represent the difference of two sets by placing them in parenthesis and separating them with the symbol โ€œโˆชโ€.

({๐‘Ž, ๐‘} โˆ’ {๐‘, ๐‘‘})

(๐”ธ โˆ’ ๐”น)

Again, the outer most parenthesis may be dropped for readability.

{๐‘Ž, ๐‘} โˆ’ {๐‘, ๐‘‘}

๐”ธ โˆ’ ๐”น

The difference of a set ๐”ธ and a set ๐”น includes every member of ๐”ธ that is not a member of ๐”น.

{1, 2} โˆ’ {2} = {1}

{1, 3} โˆ’ {2, 3} = {1}

{1, 2, 3} โˆ’ {1, 2, 3, 4, 5} = {}

In the last example the resulting set has no members. In place of {}, we can use the empty set symbol โ€œโˆ…โ€.

The Lemmon proof system uses the difference operation to discharge assumptions. The Lemmon rules for conditional introduction, negation introduction, and indirect proof all use the difference operation.

Accurate set notation requires that we enclose set members in brackets; however, this convention is typically relaxed when writing the assumption set on a Lemon proof line.

Primitive Rules

Once you work through the rule definitions and examples below, consult Tim Eshingโ€™s inference rule handout or my Lemmon System quick reference.

Assumption (A)

Add any formula ๐œ™ to a new line ๐‘› and add a new assumption name ๐‘Ž to its assumption set (๐‘Ž should be the only element in the set). Annotate the line with โ€œA.โ€

Assumption (A)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘›. ๐œ™ A

Use this rule to add the premises of a sequent to your proof.

For example:

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠR) โŠข R
Assumption Set Line # Formula Annotation
โžค1 1. Pโ€Šโˆจโ€ŠQ A
โžค2 2. Pโ€Šโ†’โ€ŠQ A
โžค3 3. Qโ€Šโ†’โ€ŠR A
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

You can also use this rule to introduce an assumption for โ†’I or ยฌI. Note this in the annotation.

Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. Pโ€Šโ†’โ€ŠQ A
3 3. Qโ€Šโ†’โ€ŠR A
โžค4 4. ยฌR A for ยฌI
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Reiteration (R)

Reiterate any formula ๐œ™ from a previous line ๐‘š. The new line ๐‘› will use the same assumption set as line ๐‘š. Annotate the line with โ€œReitโ€ and cite line ๐‘š.

Reiteration
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™ A
๐”ธ ๐‘›. ๐œ™ Reit ๐‘š

For example:

โŠข Pโ€Šโ†’โ€ŠP
Assumption Set Line # Formula Annotation
1 1. P A for โ†’I
โžค1 2. P Reit 1
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Conjunction Introduction (&I) / Conjunction (Conj)

Given any formula ๐œ™ on a line ๐‘™ resting on assumption set ๐”ธ and any formula ๐œ“ on a line ๐‘š resting on assumption set ๐”น, add ๐œ™โ€Š&โ€Š๐œ“ to a new line ๐‘›. Line ๐‘› will rest on ๐”ธ โˆช ๐”น. Annotate the line with โ€œ&Iโ€ and cite lines ๐‘™ and ๐‘š.

Conjunction Introduction (&I)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™
๐”น ๐‘š. ๐œ“
๐”ธ โˆช ๐”น ๐‘›. ๐œ™โ€Š&โ€Š๐œ“ &I ๐‘™, ๐‘š

For example:

((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR))
Assumption Set Line # Formula Annotation
1 1 (Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR A
2 2 P A for โ†’I
3 3 Q A for โ†’I
โžค2, 3 4 Pโ€Š&โ€ŠQ &I 2, 3
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Conjunction Elimination (&E)

Given a formula ๐œ™โ€Š&โ€Š๐œ“ on a line ๐‘š, add either ๐œ™ or ๐œ“, to a new line ๐‘›. Line ๐‘› will use the same assumption set as line ๐‘š. Annotate the line with โ€œ&Eโ€ and cite line ๐‘š.

Conjunction Elimination (&E)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Š&โ€Š๐œ“
๐”ธ ๐‘›. ๐œ™ &E ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Š&โ€Š๐œ“
๐”ธ ๐‘›. ๐œ“ &E ๐‘š

For example:

(Pโ€Š&โ€ŠQ) โŠข (Qโ€Š&โ€ŠP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠQ A
โžค1 2. P &E 1
โžค1 3. Q &E 1
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Disjunction Introduction (โˆจI) / Addition (Add)

Given a formula ๐œ™ on a line ๐‘š, add ether ๐œ™โ€Šโˆจโ€Š๐œ“ or ๐œ“โ€Šโˆจโ€Š๐œ™ to a new line ๐‘›. Line ๐‘› will use the same assumption set as line ๐‘š. Annotate the line with โ€œโˆจIโ€ and cite line ๐‘š.

Disjunction Introduction (โˆจI)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™
๐”ธ ๐‘›. ๐œ™โ€Šโˆจโ€Š๐œ“ โˆจI ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™
๐”ธ ๐‘›. ๐œ™โ€Šโˆจโ€Š๐œ“ โˆจI ๐‘š

For example:

ยฌ(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌPโ€Š&โ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(Pโ€Šโˆจโ€ŠQ) A
2 2. P A for ยฌI
โžค2 3. Pโ€Šโˆจโ€ŠQ โˆจI 2
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Disjunction Elimination (โˆจE) / Disjunctive Syllogism (DS)

Given a formula ๐œ™โ€Šโˆจโ€Š๐œ“ on a line ๐‘™ resting on assumption set ๐”ธ and the denial of ๐œ™ on a line ๐‘š resting on assumption set ๐”น, add ๐œ“ to a new line ๐‘›. Alternatively, given a formula ๐œ™โ€Šโˆจโ€Š๐œ“ on a line ๐‘™ resting on assumption set ๐”น and the denial of ๐œ“ on a line ๐‘š resting on assumption set ๐”น, add ๐œ™ to a new line ๐‘›. Line ๐‘› will rest on the assumption set ๐”ธ โˆช ๐”น. Annotate line ๐‘› with โ€œโˆจEโ€ and cite lines ๐‘™ and ๐‘š.

Disjunction Elimination (โˆจE)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโˆจโ€Š๐œ“
๐”น ๐‘š. ยฌ๐œ™
๐”ธ โˆช ๐”น ๐‘›. ๐œ“ โˆจE ๐‘™, ๐‘š

Alternatively,

Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโˆจโ€Š๐œ“
๐”น ๐‘š. ยฌ๐œ“
๐”ธ โˆช ๐”น ๐‘›. ๐œ™ โˆจE ๐‘™, ๐‘š

Since a negated formula ยฌ๐œ™ has two denial, ๐œ™ and ยฌยฌ๐œ™, the rule also permits

Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ยฌ๐œ™โ€Šโˆจโ€Š๐œ“
๐”น ๐‘š. ๐œ™
๐”ธ โˆช ๐”น ๐‘›. ๐œ“ โˆจE ๐‘™, ๐‘š

and

Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโˆจโ€Šยฌ๐œ“
๐”น ๐‘š. ๐œ“
๐”ธ โˆช ๐”น ๐‘›. ๐œ™ โˆจE ๐‘™, ๐‘š

For example:

((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR) โŠข (Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR))
Assumption Set Line # Formula Annotation
1 1. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR A
2 2. ยฌ(Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR)) A for ยฌI
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ
2 7. ยฌR &E 5
2 8. ยฌP &E 3
โžค1, 2 9. Pโ€Šโˆจโ€ŠQ โˆจE 1, 7
โžค1, 2 10. Q โˆจE 8, 9
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Another example:

(Pโ€Š&โ€ŠQ) โŠข ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠQ A
1 2. P &E 1
1 3. Q &E 1
4* 4. ยฌPโ€Šโˆจโ€ŠยฌQ A
โžค1, 4 5. ยฌQ โˆจE 2, 4
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

*Note that the assumption name โ€œ4โ€ was introduced on line 4. The new name could have been any name but โ€œ1,โ€ since โ€œ1โ€ has already been used. Some logicians prefer sequential names, which keeps track of the total number of assumptions in the proof. Tim and I prefer that name match the line number on which the assumption was introduced. This makes the assumption easier to located when it is time to discharge the assumption. Another option is to name assumptoins with lowercase letters. Assumption names are not line numbers, so the lowercase letters emphasize the distinction.

Conditional Introduction (โ†’I) / Conditional Proof (CP)

Given a formula ๐œ™ that was introduced as assumption ๐‘Ž on line ๐‘™ and a formula ๐œ“ on line ๐‘š resting on the assumption set ๐”ธ, add ๐œ™โ€Šโ†’โ€Š๐œ“ to a new line ๐‘›. Line ๐‘› will rest on the assumption set ๐”ธ โˆ’ {๐‘Ž}. (This will โ€œdischargeโ€ assumption ๐‘Ž.) Annotate the line with โ€œโ†’Iโ€ followed by the assumption name ๐‘Ž in parenthesis and cite line ๐‘š.

Conditional Introduction (โ†’I)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘™. ๐œ™ A for โ†’I
๐”ธ ๐‘š. ๐œ“
๐”ธ โˆ’ {๐‘Ž} ๐‘›. ๐œ™โ€Šโ†’โ€Š๐œ“ โ†’I(๐‘™) ๐‘š

For example:

((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR))
Assumption Set Line # Formula Annotation
1 1 (Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR A
2 2 P A for โ†’I
3 3 Q A for โ†’I
2, 3 4 Pโ€Š&โ€ŠQ &I 2, 3
1, 2, 3 5 R โ†’E 1, 4
โžค1, 2 6 Qโ€Šโ†’โ€ŠR โ†’I(3) 3, 5
โžค1 7 Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR) โ†’I(2) 2, 6

If you discharge all the assumptions for a formula, place the empty set symbol โ€œโˆ…โ€ in the assumption set column for the new line. If a formula rest on the assumption set โˆ… it is a theorem.

โˆ… โŠข Pโ€Šโ†’โ€ŠP
Assumption Set Line # Formula Annotation
1 1. P A for โ†’I
1 2. P Reit 1
โˆ… 3. Pโ€Šโ†’โ€ŠP โ†’I(1) 2

Conditional Elimination (โ†’E) / Modus ponens (MP)

Given a formula ๐œ™ on a line ๐‘™ resting on assumption set ๐”ธ and formula ๐œ™โ€Šโ†’โ€Š๐œ“ on a line ๐‘š resting on assumption set ๐”น, add ๐œ“ to a new line ๐‘›. Line ๐‘› will rest on the assumption set ๐”ธ โˆช ๐”น. Annotate line ๐‘› with โ€œโ†’Eโ€ and cite lines ๐‘™ and ๐‘š.

Conditional Elimination (โ†’E)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™ A
๐”น ๐‘š. ๐œ™โ€Šโ†’โ€Š๐œ“ A
๐”ธ โˆช ๐”น ๐‘›. ๐œ“ โ†’E ๐‘™, ๐‘š

For example:

Pโ€Šโ†’โ€ŠQ, P โŠข Q
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. P A
โžค1, 2 3. Q โ†’E 1, 2

Biconditional Introduction (โ†”๏ธŽI)

Given a formula ๐œ™โ€Šโ†’โ€Š๐œ“ on a line ๐‘™ resting on assumption set ๐”ธ and a formula ๐œ“โ€Šโ†’โ€Š๐œ™ on a line ๐‘š resting on assumption set ๐”น, add ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“ to a new line ๐‘›. Line ๐‘› will rest on ๐”ธ โˆช ๐”น. Annotate line ๐‘› with โ€œโ†”๏ธŽIโ€ and cite lines ๐‘™ and ๐‘š.

Biconditional Introduction (โ†”๏ธŽI)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘™. ๐œ™โ€Šโ†’โ€Š๐œ“ A
๐”น ๐‘š. ๐œ“โ€Šโ†’โ€Š๐œ™ A
๐”ธ โˆช ๐”น ๐‘›. ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“ โ†”๏ธŽI ๐‘™, ๐‘š

For example:

Pโ€Šโ†’โ€ŠQ, Qโ€Šโ†’โ€ŠP โŠข Pโ€Šโ†”๏ธŽโ€ŠQ
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. Qโ€Šโ†’โ€ŠP A
3 3. Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 1, 2

Biconditional Elimination (โ†”๏ธŽE)

Given a formula ๐œ™โ†”๏ธŽ๐œ“ on a line ๐‘š, add ๐œ™โ€Šโ†’โ€Š๐œ“ or ๐œ“โ€Šโ†’โ€Š๐œ™ to a new line ๐‘›. Line ๐‘› will rest on the same assumption set as ๐‘š. Annotate line ๐‘› with โ€œโ†”๏ธŽEโ€ and cite line ๐‘š.

Biconditional Elimination (โ†”๏ธŽE)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“
๐”ธ ๐‘›. ๐œ™โ€Šโ†’โ€Š๐œ“ โ†”๏ธŽE ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ๐œ™โ€Šโ†”๏ธŽโ€Š๐œ“
๐”ธ ๐‘›. ๐œ“โ€Šโ†’โ€Š๐œ™ โ†”๏ธŽE ๐‘š

For example:

Pโ€Šโ†”๏ธŽโ€ŠQ โŠข Pโ€Šโ†’โ€ŠQ
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
1 2. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1

Negation Introduction (ยฌI)

Given

add ยฌ๐œ™ to a new line ๐‘›. Line ๐‘› will rest on all the assumptions from lines ๐‘™ and ๐‘š, except ๐‘Ž (i.e., (๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž}). (Again, this is called discharging an assumption.) Annotate the line with โ€œโ†’Iโ€ followed by the assumption name ๐‘Ž in parenthesis and cite lines ๐‘™ and ๐‘˜.

Negation Introduction (ยฌI)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘˜. ๐œ™ A for ยฌI
๐”ธ ๐‘™. ๐œ“
๐”น ๐‘š. ยฌ๐œ“
(๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž} ๐‘›. ยฌ๐œ™ ยฌI(๐‘Ž) ๐‘™, ๐‘š

For example:

(Pโ€Šโ†’โ€ŠQ), ยฌQ โŠข ยฌP
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. ยฌQ A
3 3. P A for ยฌI
1, 3 4. Q โ†’E 1, 3
โžค1, 2 5. ยฌP ยฌI(3) 2, 4

Another example:

(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for ยฌI
1, 2 3. P โˆจE 1, 2
โžค1 4. ยฌยฌP ยฌI(2) 2, 3
โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฎ

Negation Elimination (ยฌE)

Given a formula ยฌยฌ๐œ™ on a line ๐‘š resting on assumption set ๐”ธ, add ๐œ™ to a line ๐‘›. Line ๐‘› will rest assumption set ๐”ธ. Annotate line ๐‘› with โ€œยฌEโ€ and cite line ๐‘š.

Negation Elimination (ยฌE)
Assumption Set Line # Formula Annotation
๐”ธ ๐‘š. ยฌยฌ๐œ™
๐”ธ ๐‘›. ๐œ™ ยฌE ๐‘›

For example:

(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for ยฌI
1, 2 3. P โˆจE 1, 2
1 4. ยฌยฌP ยฌI(2) 2, 3
โžค1 5. P ยฌE 4

Reductio ad absurdum (RAA) / Indirect Proof (IP)

Given

add ๐œ™โ€™s denial to a new line ๐‘›. Line ๐‘› will rest on all the assumptions from lines ๐‘™ and ๐‘š, except ๐‘Ž (i.e., (๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž}). Annotate the line with โ€œRAAโ€ or โ€œIPโ€ followed by the assumption name ๐‘Ž in parenthesis and cite lines ๐‘™ and ๐‘˜.

Reductio ad absurdum (RAA) / Indirect Proof (IP)
Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘˜. ๐œ™ A for RAA
๐”ธ ๐‘™. ๐œ“
๐”น ๐‘š. ยฌ๐œ“
(๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž} ๐‘›. ยฌ๐œ™ RAA(๐‘Ž) ๐‘™, ๐‘š

Alternatively:

Assumption Set Line # Formula Annotation
{๐‘Ž} ๐‘˜. ยฌ๐œ™ A for RAA
๐”ธ ๐‘™. ๐œ“
๐”น ๐‘š. ยฌ๐œ“
(๐”ธ โˆช ๐”น) โˆ’ {๐‘Ž} ๐‘›. ๐œ™ RAA(๐‘Ž) ๐‘™, ๐‘š

For example:

(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for RAA
1, 2 3. P โˆจE 1, 2
โžค1 4. P RAA(2) 2, 3

Derived Rule Proofs

Since many of us learned logic using the Fitch Proof system, Iโ€™ve included both Lemmon and Fitch style proofs for each derived rule. Lemmon proofs use the primitive rules above. Fitch proofs use the rules from chapter 16 of forall๐‘ฅ: Calgary (Fall 2021+). Compare the proofs to better understand each system.

Double Negation (DN)

Lemmon

ยฌยฌP โŠข P
Assumption Set Line # Formula Annotation
1 1. ยฌยฌP A
1 2. P ยฌE 1
P โŠข ยฌยฌP
Assumption Set Line # Formula Annotation
1 1. P A
2 2. ยฌP A
1 3. ยฌยฌP ยฌI(2) 1, 2

Fitch

ยฌยฌP โŠข P
1ยฌยฌP
2ยฌP
3โŠฅ ยฌE 1, 2
4P IP 2โ€“3
P โŠข ยฌยฌP
1P
2ยฌP
3โŠฅ ยฌE 1, 2
4ยฌยฌP ยฌI 2โ€“3

Redundancy (Re)

Lemmon

(Pโ€Š&โ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠP A
1 2. P &E
P โŠข (Pโ€Š&โ€ŠP)
Assumption Set Line # Formula Annotation
1 1. P A
1 2. Pโ€Š&โ€ŠP &I 1, 1
(Pโ€Šโˆจโ€ŠP) โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠP A
2 2. ยฌP A for RAA
1, 2 3. P โˆจE 1, 2
1 4. P RAA(2) 2, 3
P โŠข (Pโ€Šโˆจโ€ŠP)
Assumption Set Line # Formula Annotation
1 1. P A
1 2. Pโ€Šโˆจโ€ŠP โˆจI 1

Fitch

(Pโ€Š&โ€ŠP) โŠข P
1Pโ€Š&โ€ŠP
2P &E 1
P โŠข (Pโ€Š&โ€ŠP)
1P
3Pโ€Š&โ€ŠP &I 1, 1
(Pโ€Šโˆจโ€ŠP) โŠข P
1Pโ€Šโˆจโ€ŠP
2P
3P Reit 2
4Pโ€Šโˆจโ€ŠP โˆจE 1, 2โ€“3, 2โ€“3
P โŠข (Pโ€Šโˆจโ€ŠP)
1P
2Pโ€Šโˆจโ€ŠP โˆจI 1

Commutativity (Comm)

Lemmon

(Pโ€Š&โ€ŠQ) โŠข (Qโ€Š&โ€ŠP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠQ A
1 2. P &E 1
1 3. Q &E 1
1 4. Qโ€Š&โ€ŠP &I 2, 3
(Qโ€Š&โ€ŠP) โŠข (Pโ€Š&โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Qโ€Š&โ€ŠP A
1 2. Q &E 1
1 3. P &E 1
1 4. Pโ€Š&โ€ŠQ &I 2, 3
(Pโ€Šโˆจโ€ŠQ) โŠข (Qโ€Šโˆจโ€ŠP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. ยฌ(Qโ€Šโˆจโ€ŠP) A for RAA
3 3. P A for ยฌI
3 4. Qโ€Šโˆจโ€ŠP โˆจI 3
2 5. ยฌP ยฌI(3) 2, 4
1, 2 6. Q โˆจE 1, 5
1, 2 7. Qโ€Šโˆจโ€ŠP โˆจI 6
1 8. Qโ€Šโˆจโ€ŠP RAA(2) 2, 7
(Qโ€Šโˆจโ€ŠP) โŠข (Pโ€Šโˆจโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Qโ€Šโˆจโ€ŠP A
2 2. ยฌ(Pโ€Šโˆจโ€ŠQ) A for RAA
3 3. P A for ยฌI
3 4. Pโ€Šโˆจโ€ŠQ โˆจI 3
2 5. ยฌP ยฌI(3) 2, 4
1, 2 6. Q โˆจE 1, 5
1, 2 7. Pโ€Šโˆจโ€ŠQ โˆจI 6
1 8. Pโ€Šโˆจโ€ŠQ RAA(2) 2, 7
(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (Qโ€Šโ†”๏ธŽโ€ŠP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
1 2. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1
1 3. Qโ€Šโ†’โ€ŠP โ†”๏ธŽE 1
1 4. Qโ€Šโ†”๏ธŽโ€ŠP โ†”๏ธŽI 2, 3
(Qโ€Šโ†”๏ธŽโ€ŠP) โŠข (Pโ€Šโ†”๏ธŽโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Qโ€Šโ†”๏ธŽโ€ŠP A
1 2. Qโ€Šโ†’โ€ŠP โ†”๏ธŽE 1
1 3. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1
1 4. Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 2, 3

Fitch

(Pโ€Š&โ€ŠQ) โŠข (Qโ€Š&โ€ŠP)
1Pโ€Š&โ€ŠQ
2P &E 1
3Q &E 1
4Qโ€Š&โ€ŠP &I 2, 3
(Qโ€Š&โ€ŠP) โŠข (Pโ€Š&โ€ŠQ)
1Qโ€Š&โ€ŠP
2Q &E 1
3P &E 1
4Pโ€Š&โ€ŠQ &I 2, 3
(Pโ€Šโˆจโ€ŠQ) โŠข (Qโ€Šโˆจโ€ŠP)
1Pโ€Šโˆจโ€ŠQ
2P
3Qโ€Šโˆจโ€ŠP โˆจI 2
4Q
5Qโ€Šโˆจโ€ŠP โˆจI 4
6Qโ€Šโˆจโ€ŠP โˆจE 1, 2โ€“3, 4โ€“5
(Qโ€Šโˆจโ€ŠP) โŠข (Pโ€Šโˆจโ€ŠQ)
1Qโ€Šโˆจโ€ŠP
2Q
3Pโ€Šโˆจโ€ŠQ โˆจI 2
4P
5Pโ€Šโˆจโ€ŠQ vI 5
6Pโ€Šโˆจโ€ŠQ โˆจE 1, 2โ€“3, 4โ€“5
(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (Qโ€Šโ†”๏ธŽโ€ŠP)
1Pโ€Šโ†”๏ธŽโ€ŠQ
2P
3Q โ†”๏ธŽE 1
4Q
5P โ†”๏ธŽE 1
6Qโ€Šโ†”๏ธŽโ€ŠP โ†”๏ธŽI 2โ€“3, 4โ€“5
(Qโ€Šโ†”๏ธŽโ€ŠP) โŠข (Pโ€Šโ†”๏ธŽโ€ŠQ)
1Qโ€Šโ†”๏ธŽโ€ŠP
2Q
3P โ†”๏ธŽE 1
4P
5Q โ†”๏ธŽE 1
6Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 2โ€“3, 4โ€“5

Associativity (Assoc)

Lemmon

(Pโ€Š&โ€Š(Qโ€Š&โ€ŠR)) โŠข ((Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€Š(Qโ€Š&โ€ŠR) A
1 2. P &E 1
1 3. Qโ€Š&โ€ŠR &E 1
1 4. Q &E 3
1 5. R &E 3
1 6. Pโ€Š&โ€ŠQ &I 2, 4
1 7. (Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR &I 5, 6
((Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR) โŠข (Pโ€Š&โ€Š(Qโ€Š&โ€ŠR))
Assumption Set Line # Formula Annotation
1 1. (Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR A
1 2. Pโ€Š&โ€ŠQ &E 1
1 3. R &E 1
1 4. P &E 2
1 5. Q &E 2
1 6. Qโ€Š&โ€ŠR &I 3, 5
1 7. Pโ€Š&โ€Š(Qโ€Š&โ€ŠR) &I 4, 6
(Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR)) โŠข ((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) A
2 2. ยฌ((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR) A for RAA
3 3. ยฌR A for RAA
4 4. ยฌP A for RAA
1, 4 5. Qโ€Šโˆจโ€ŠR โˆจE 1, 4
1, 3, 4 6. Q โˆจE 3, 5
1, 3, 4 7. Pโ€Šโˆจโ€ŠQ โˆจI 6
1, 3, 4 8. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจI 7
1, 2, 3 9. P RAA(4) 2, 8
1, 2, 3 10. Pโ€Šโˆจโ€ŠQ โˆจI 9
1, 2, 3 11. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจI 10
1, 2 12. R RAA(3) 2, 11
1, 2 13. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจI 12
1 14. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR RAA(2) 2, 13
((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR) โŠข (Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR))
Assumption Set Line # Formula Annotation
1 1. (Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR A
2 2. ยฌ(Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR)) A for RAA
3 3. ยฌP A for RAA
4 4. ยฌR A for RAA
1, 4 5. Pโ€Šโˆจโ€ŠQ โˆจE 1, 4
1, 3, 4 6. Q โˆจE 3, 5
1, 3, 4 7. Qโ€Šโˆจโ€ŠR โˆจI 6
1, 3, 4 8. Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 7
1, 2, 3 9. R RAA(4) 2, 8
1, 2, 3 10. Qโ€Šโˆจโ€ŠR โˆจI 9
1, 2, 3 11. Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 10
1, 2 12. P RAA(3) 2, 11
1, 2 13. Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 12
1 14. Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) RAA(2) 2, 13

Fitch

((Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR) โŠข (Pโ€Š&โ€Š(Qโ€Š&โ€ŠR))
1Pโ€Š&โ€Š(Qโ€Š&โ€ŠR)
2P &E 1
3Qโ€Š&โ€ŠR &E 1
4Q &E 3
5R &E 3
6Pโ€Š&โ€ŠQ &I 2, 4
7(Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR &I 5, 6
(Pโ€Š&โ€Š(Qโ€Š&โ€ŠR)) โŠข ((Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR)
1(Pโ€Š&โ€ŠQ)โ€Š&โ€ŠR
2Pโ€Š&โ€ŠQ &E 1
3R &E 1
4P &E 2
5Q &E 2
6Qโ€Š&โ€ŠR &I 3, 5
7Pโ€Š&โ€Š(Qโ€Š&โ€ŠR) &I 4, 6
(Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR)) โŠข ((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR)
1Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR)
2P
3Pโ€Šโˆจโ€ŠQ โˆจI 2
4(Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจI 3
5Qโ€Šโˆจโ€ŠR
6Q
7Pโ€Šโˆจโ€ŠQ โˆจI 6
8(Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจI 7
9R
10(Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจI 9
11(Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจE 5, 6โ€“8, 9โ€“10
12(Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR โˆจE 1, 2โ€“4, 5โ€“11
((Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR) โŠข (Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR))
1(Pโ€Šโˆจโ€ŠQ)โ€Šโˆจโ€ŠR
2Pโ€Šโˆจโ€ŠQ
3P
4Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 3
5Q
6Qโ€Šโˆจโ€ŠR โˆจI 5
7Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 6
8Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจE 2, 3โ€“4, 5โ€“7
9R
10Qโ€Šโˆจโ€ŠR โˆจI 9
11Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 10
12Pโ€Šโˆจโ€Š(Qโ€Šโˆจโ€ŠR) โˆจE 1, 2โ€“8, 9โ€“11

Distribution (Dist)

Lemmon

(Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR)) โŠข ((Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR))
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) A
1 2. P &E 1
1 3. Qโ€Šโˆจโ€ŠR &E 2
4 4. ยฌ((Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR)) A for RAA
5 5. ยฌ(Pโ€Š&โ€ŠQ) A for RAA
6 6. Q A for ยฌI
1, 6 7. Pโ€Š&โ€ŠQ &I 2, 6
1, 5 8. ยฌQ ยฌI(5) 5, 7
1, 5 9. R โˆจE 3, 8
1, 5 10. Pโ€Š&โ€ŠR &I 2, 9
1, 5 11. (Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR) โˆจI 10
1, 4 12. Pโ€Š&โ€ŠQ ยฌI(5) 4, 11
1, 4 13. (Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR) โˆจI 12
1 14. (Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR) ยฌI(4) 4, 13
((Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR)) โŠข (Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR))
Assumption Set Line # Formula Annotation
1 1. (Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR) A
2 2. ยฌ(Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR)) A for RAA
3 3. ยฌ(Pโ€Š&โ€ŠQ) A for RAA
1, 3 4. Pโ€Š&โ€ŠR โˆจE 1, 3
1, 3 5. P &E 4
1, 3 6. R &E 4
1, 3 7. Qโ€Šโˆจโ€ŠR โˆจI 6
1, 3 8. Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) &I 5, 7
1, 2 9. Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) RAA(3) 2, 8
1 10. Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) RAA(2) 2, 9
(Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR)) โŠข ((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR))
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) A
2 2. ยฌ((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)) A for RAA
3 3. P A for ยฌI
3 4. Pโ€Šโˆจโ€ŠQ โˆจI 3
3 5. Pโ€Šโˆจโ€ŠR โˆจI 3
3 6. (Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) &I 4, 5
2 7. ยฌP ยฌI(3) 2, 6
1, 2 8. Qโ€Š&โ€ŠR โˆจE 1, 7
1, 2 9. Q &E 8
1, 2 10. R &E 8
1, 2 11. Pโ€Šโˆจโ€ŠQ โˆจI 9
1, 2 12. Pโ€Šโˆจโ€ŠR โˆจI 10
1, 2 13. (Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) &I 11, 12
1 14. (Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) RAA(2) 2, 13
((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)) โŠข (Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))
Assumption Set Line # Formula Annotation
1 1. (Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) A
1 2. Pโ€Šโˆจโ€ŠQ &E 1
1 3. Pโ€Šโˆจโ€ŠR &E 1
4 4. ยฌ(Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR)) A for RAA
5 5. P A for ยฌI
5 6. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 5
4 7. ยฌP ยฌI(5) 4, 6
1, 4 8. Q โˆจE 2, 7
1, 4 9. R โˆจE 3, 7
1, 4 10. Qโ€Š&โ€ŠR &I 8, 9
1, 4 11. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 10
1 12. Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) RAA(4) 4, 11

Fitch

(Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR)) โŠข ((Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR))
1Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR)
2P &E 1
3Qโ€Šโˆจโ€ŠR &E 1
4Q
5Pโ€Š&โ€ŠQ &I 2, 4
6(Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR) โˆจI 5
7R
8Pโ€Š&โ€ŠR &I 2, 7
9(Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR)โ€ƒ โˆจI 8
10(Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR) vE 3, 4โ€“6, 7โ€“9
((Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR)) โŠข (Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR))
1(Pโ€Š&โ€ŠQ)โ€Šโˆจโ€Š(Pโ€Š&โ€ŠR)
2Pโ€Š&โ€ŠQ
3P &E 2
4Q &E 2
5Qโ€Šโˆจโ€ŠR โˆจI 4
6Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) &I 3, 5
7Pโ€Š&โ€ŠR
8P &E 7
9R &E 7
10Qโ€Šโˆจโ€ŠR โˆจI 9
11Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) &I 8, 10
12Pโ€Š&โ€Š(Qโ€Šโˆจโ€ŠR) โˆจI 1, 2โ€“6, 7โ€“11
(Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR)) โŠข ((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR))
1Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR)
2P
3Pโ€Šโˆจโ€ŠQ โˆจI 2
4Pโ€Šโˆจโ€ŠR โˆจI 2
5(Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) &I 3, 4
6Qโ€Š&โ€ŠR
7Q &E 6
8R &E 6
9Pโ€Šโˆจโ€ŠQ โˆจI 7
10Pโ€Šโˆจโ€ŠR โˆจI 8
11(Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) &I 9, 10
12(Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR) โˆจI 1, 2โ€“5, 6โ€“12
((Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)) โŠข (Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))
1(Pโ€Šโˆจโ€ŠQ)โ€Š&โ€Š(Pโ€Šโˆจโ€ŠR)
2Pโ€Šโˆจโ€ŠQ &E 1
3Pโ€Šโˆจโ€ŠR &E 1
4ยฌ(Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR))
5P
6Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 5
7โŠฅ ยฌE 4, 6
8Q X 7
9R X 7
10Q
11Q Reit 10
12Q โˆจE 2, 5โ€“8, 10โ€“11
13R
14R Reit 13
15R โˆจE 3, 5โ€“9, 13โ€“14
16Qโ€Š&โ€ŠR &I 12, 15
17Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) โˆจI 16
18โŠฅ ยฌE 4, 17
19Pโ€Šโˆจโ€Š(Qโ€Š&โ€ŠR) IP 4โ€“18

DeMorganโ€™s Theorem (DM)

Lemmon

ยฌ(Pโ€Š&โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(Pโ€Š&โ€ŠQ) A
2 2. P A for ยฌI
3 3. Q A for ยฌI
2, 3 4. Pโ€Š&โ€ŠQ &I 2, 3
1, 3 5. ยฌQ ยฌE(2) 1, 4
1 6. ยฌP ยฌE(3) 3, 5
1 7. ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 6
(ยฌPโ€Šโˆจโ€ŠยฌQ) โŠข ยฌ(Pโ€Š&โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌPโ€Šโˆจโ€ŠยฌQ A
2 2. Pโ€Š&โ€ŠQ A for ยฌI
2 3. P &E 2
2 4. Q &E 2
1, 2 5. ยฌQ โˆจE 1, 3
1 6. ยฌ(Pโ€Š&โ€ŠQ) ยฌI(2) 4, 5
ยฌ(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌPโ€Š&โ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(Pโ€Šโˆจโ€ŠQ) A
2 2. P A for ยฌI
2 3. Pโ€Šโˆจโ€ŠQ โˆจI 2
1 4. ยฌP ยฌI(2) 1, 3
5 5. Q A for ยฌI
5 6. Pโ€Šโˆจโ€ŠQ โˆจI 5
1 7. ยฌQ ยฌI(5) 1, 6
1 8. ยฌPโ€Š&โ€ŠยฌQ &I 4, 7
(ยฌPโ€Š&โ€ŠยฌQ) โŠข ยฌ(Pโ€Šโˆจโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌPโ€Š&โ€ŠยฌQ A
1 2. ยฌP &E 1
1 3. ยฌQ &E 1
4 4. Pโ€Šโˆจโ€ŠQ A for ยฌI
1, 4 5. Q โˆจE 2, 4
1 6. ยฌ(Pโ€Šโˆจโ€ŠQ) ยฌI(4) 3, 5
(Pโ€Šโˆจโ€ŠQ) โŠข ยฌ(ยฌPโ€Š&โ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. ยฌPโ€Š&โ€ŠยฌQ A for ยฌI
2 3. ยฌP &E 2
2 4. ยฌQ &E 2
1, 2 5. P โˆจE 1, 4
1 6. ยฌ(ยฌPโ€Š&โ€ŠยฌQ) ยฌI(2) 3, 5
ยฌ(ยฌPโ€Š&โ€ŠยฌQ) โŠข (Pโ€Šโˆจโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(ยฌPโ€Š&โ€ŠยฌQ) A
2 2. ยฌ(Pโ€Šโˆจโ€ŠQ) A for RAA
3 3. P A for ยฌI
3 4. Pโ€Šโˆจโ€ŠQ โˆจI 3
2 5. ยฌP ยฌI(3) 2, 4
6 6. Q A for RAA
6 7. Pโ€Šโˆจโ€ŠQ โˆจI 6
2 8. ยฌQ ยฌI(6) 2, 7
2 10. ยฌPโ€Š&โ€ŠยฌQ &I 5, 8
1 12. Pโ€Šโˆจโ€ŠQ RAA(2) 1, 10
(Pโ€Š&โ€ŠQ) โŠข ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠQ A
1 2. P &E 1
1 3. Q &E 1
4 4. ยฌPโ€Šโˆจโ€ŠยฌQ A
1, 4 5. ยฌQ โˆจE 2, 4
1 6. ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ) ยฌI(4) 3, 5
ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ) โŠข (Pโ€Š&โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ) A
2 2. ยฌP A for RAA
2 3. ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 2
1 4. P RAA(2) 1, 3
5 5. ยฌQ A for RAA
5 6. ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 5
1 7. Q RAA(5) 1, 6
1 8. Pโ€Š&โ€ŠQ &I 4, 7

Fitch

ยฌ(Pโ€Š&โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠยฌQ)
1ยฌ(Pโ€Š&โ€ŠQ)
2P
3Q
4Pโ€Š&โ€ŠQ &I 2, 3
5โŠฅ ยฌE 1, 4
6ยฌQ ยฌI 3โ€“6
7โŠฅ ยฌE 3, 6
8ยฌP IP 2โ€“7
9ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 8
(ยฌPโ€Šโˆจโ€ŠยฌQ) โŠข ยฌ(Pโ€Š&โ€ŠQ)
1(ยฌPโ€Šโˆจโ€ŠยฌQ)
2(Pโ€Š&โ€ŠQ)
3P &E 2
4Q &E 2
5ยฌQ โˆจE 1, 3
7โŠฅ ยฌE
8ยฌ(Pโ€Š&โ€ŠQ) IP 2โ€“7
ยฌ(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌPโ€Š&โ€ŠยฌQ)
1ยฌ(Pโ€Šโˆจโ€ŠQ)
2P
3Pโ€Šโˆจโ€ŠQ โˆจI 2
4โŠฅ ยฌE 1, 3
5ยฌP ยฌI 2โ€“4
6Q
7Pโ€Šโˆจโ€ŠQ โˆจI 2
8โŠฅ ยฌE 1, 7
9ยฌQ ยฌI 6โ€“8
10ยฌPโ€Š&โ€ŠยฌQ &I 5, 9
(ยฌPโ€Š&โ€ŠยฌQ) โŠข ยฌ(Pโ€Šโˆจโ€ŠQ)
1ยฌPโ€Š&โ€ŠยฌQ
2ยฌP &E 1
3ยฌQ &E 1
4Pโ€Šโˆจโ€ŠQ
5Q โˆจE 2, 4
6โŠฅ ยฌE 3, 5
7ยฌ(Pโ€Šโˆจโ€ŠQ) ยฌI 4โ€“6
(Pโ€Šโˆจโ€ŠQ) โŠข ยฌ(ยฌPโ€Š&โ€ŠยฌQ)
1Pโ€Šโˆจโ€ŠQ
2ยฌPโ€Š&โ€ŠยฌQ
3ยฌP &E 2
4ยฌQ &E 2
5P โˆจE 1, 4
6โŠฅ ยฌE 3, 5
7ยฌ(ยฌPโ€Š&โ€ŠยฌQ) IP 2โ€“6
ยฌ(ยฌPโ€Š&โ€ŠยฌQ) โŠข (Pโ€Šโˆจโ€ŠQ)
1ยฌ(ยฌPโ€Š&โ€ŠยฌQ)
2ยฌ(Pโ€Šโˆจโ€ŠQ)
3P
4Pโ€Šโˆจโ€ŠQ โˆจI 3
5โŠฅ ยฌE 2, 4
6ยฌP ยฌI 3โ€“5
7Q
8Pโ€Šโˆจโ€ŠQ โˆจI 7
9โŠฅ ยฌE 2, 8
10ยฌQ ยฌI 7โ€“9
11ยฌPโ€Š&โ€ŠยฌQ &I 6, 10
12โŠฅ ยฌE 1, 11
13Pโ€Šโˆจโ€ŠQ IP 2โ€“12
(Pโ€Š&โ€ŠQ) โŠข ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ)
1Pโ€Š&โ€ŠQ
2P &E 1
3Q &E 1
4ยฌPโ€Šโˆจโ€ŠยฌQ
5ยฌQ โˆจE 2, 4
6โŠฅ ยฌE 3, 5
7ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ) ยฌI 4โ€“6
ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ) โŠข (Pโ€Š&โ€ŠQ)
1ยฌ(ยฌPโ€Šโˆจโ€ŠยฌQ)
2ยฌP
3ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 2
4โŠฅ ยฌE 1, 3
5P IP 2โ€“4
6ยฌQ
7ยฌPโ€Šโˆจโ€ŠยฌQ โˆจI 6
8โŠฅ ยฌE 1, 7
9Q IP 6โ€“8
10Pโ€Š&โ€ŠQ &I 5, 9

Def. of Conditional (โ†’df)

Lemmon

(ยฌPโ€Šโˆจโ€ŠQ) โŠข (Pโ€Šโ†’โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌPโ€Šโˆจโ€ŠQ A
2 2. P A for โ†’I
1, 2 3. Q โˆจE 1, 2
1 4. Pโ€Šโ†’โ€ŠQ โ†’I(2) 2, 3
(Pโ€Šโ†’โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. ยฌ(ยฌPโ€Šโˆจโ€ŠQ) A for RAA
3 3. P A for ยฌI
1, 3 4. Q โ†’E 1, 3
1, 3 5. ยฌPโ€Šโˆจโ€ŠQ โˆจI 4
1, 2 6. ยฌP ยฌI(3) 2, 5
1, 2 7. ยฌPโ€Šโˆจโ€ŠQ โˆจI 6
1 8. ยฌPโ€Šโˆจโ€ŠQ RAA(2) 2, 7
(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌPโ€Šโ†’โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. ยฌP A for โ†’I
1, 2 3. Q โˆจE 1
1 4. ยฌPโ€Šโ†’โ€ŠQ โ†’I(2) 2, 3
(ยฌPโ€Šโ†’โ€ŠQ) โŠข (Pโ€Šโˆจโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌPโ€Šโ†’โ€ŠQ A
2 2. ยฌ(Pโ€Šโˆจโ€ŠQ) A for ยฌI
3 3. ยฌP A for RAA
1, 3 4. Q โ†’E 1, 3
1, 3 5. Pโ€Šโˆจโ€ŠQ โˆจI 4
1, 2 6. P RAA(3) 2, 5
1, 2 7. Pโ€Šโˆจโ€ŠQ โˆจI 6
1 8. Pโ€Šโˆจโ€ŠQ ยฌI(2) 2, 7
(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌQโ€Šโ†’โ€ŠP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. ยฌQ A for โ†’I
1, 2 3. P โˆจE 1, 2
1 4. ยฌQโ€Šโ†’โ€ŠP โ†’I(2) 2, 3
(ยฌQโ€Šโ†’โ€ŠP) โŠข (Pโ€Šโˆจโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌQโ€Šโ†’โ€ŠP A
2 2. ยฌ(Pโ€Šโˆจโ€ŠQ) A for RAA
3 3. ยฌQ A for RAA
1, 3 4. P โ†’E 1, 3
1, 3 5. Pโ€Šโˆจโ€ŠQ โˆจI 4
1, 2 6. Q RAA^(3) 2, 5
1, 4 7. Pโ€Šโˆจโ€ŠQ โˆจI 6
1 8. Pโ€Šโˆจโ€ŠQ RAA(2) 2, 7

Fitch

(ยฌPโ€Šโˆจโ€ŠQ) โŠข (Pโ€Šโ†’โ€ŠQ)
1ยฌPโ€Šโˆจโ€ŠQ
2P
3Q โˆจE 1, 2
4Pโ€Šโ†’โ€ŠQ โ†’I 2โ€“3
(Pโ€Šโ†’โ€ŠQ) โŠข (ยฌPโ€Šโˆจโ€ŠQ)
1Pโ€Šโ†’โ€ŠQ
2ยฌ(ยฌPโ€Šโˆจโ€ŠQ)
3P
4Q โ†’E 1, 3
5ยฌPโ€Šโˆจโ€ŠQ โˆจI 4
6โŠฅ ยฌE 2, 5
7ยฌP IP 3โ€“6
8ยฌPโ€Šโˆจโ€ŠQ โˆจI 7
9โŠฅ ยฌE 2, 8
10ยฌPโ€Šโˆจโ€ŠQ IP 2โ€“6
(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌPโ€Šโ†’โ€ŠQ)
1Pโ€Šโˆจโ€ŠQ
2ยฌP
3Q โˆจE 1, 2
4ยฌPโ€Šโ†’โ€ŠQ โ†’I 2โ€“3
(ยฌPโ€Šโ†’โ€ŠQ) โŠข (Pโ€Šโˆจโ€ŠQ)
1ยฌPโ€Šโ†’โ€ŠQ
2ยฌ(Pโ€Šโˆจโ€ŠQ)
3ยฌP
4Q โ†’E 1, 3
5Pโ€Šโˆจโ€ŠQ โˆจI 4
6โŠฅ ยฌE 2, 5
7P IP 3โ€“6
8Pโ€Šโˆจโ€ŠQ โˆจI 7
9โŠฅ ยฌE 2, 8
10Pโ€Šโˆจโ€ŠQ IP 2โ€“9
(Pโ€Šโˆจโ€ŠQ) โŠข (ยฌQโ€Šโ†’โ€ŠP)
1Pโ€Šโˆจโ€ŠQ
2ยฌQ
3P โˆจE 1, 2
4ยฌQโ€Šโ†’โ€ŠP โ†’I 2โ€“3
(ยฌQโ€Šโ†’โ€ŠP) โŠข (Pโ€Šโˆจโ€ŠQ)
1ยฌQโ€Šโ†’โ€ŠP
2ยฌ(Pโ€Šโˆจโ€ŠQ)
3ยฌQ
4P โ†’E 1, 3
5Pโ€Šโˆจโ€ŠQ โˆจI 4
6โŠฅ ยฌE 2, 5
7Q IP 3โ€“6
8Pโ€Šโˆจโ€ŠQ โˆจI 7
9โŠฅ ยฌE 2, 8
10Pโ€Šโˆจโ€ŠQ IP 2โ€“9

True Consequent (TC)

Lemmon

Q โŠข (Pโ€Šโ†’โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Q A
2 2. P A for โ†’I
1 3. Pโ€Šโ†’โ€ŠQ โ†’I(2) 1, 2

Fitch

Q โŠข (Pโ€Šโ†’โ€ŠQ)
1Q
2P
3Q Reit 1
4Pโ€Šโ†’โ€ŠQ โ†’I 2โ€“3

False Antecedent (FA)

Lemmon

ยฌP โŠข (Pโ€Šโ†’โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌP A
2 2. P A for โ†’I
3 3. ยฌQ A for RAA
1, 2 4. Q RAA(3) 1, 2
1 5 Pโ€Šโ†’โ€ŠQ โ†’I(2) 4

Fitch

1ยฌP
2P
3โŠฅ ยฌE 1, 2
4Q X 3

Impossible Antecedent (IA)

Lemmon

(Pโ€Šโ†’โ€ŠQ), (Pโ€Šโ†’โ€ŠยฌQ) โŠข ยฌP
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. Pโ€Šโ†’โ€ŠยฌQ A
3 3. P A for ยฌI
1, 3 4. Q โ†’E 1, 3
2, 3 5. ยฌQ โ†’E 2, 3
1, 2 6. ยฌP ยฌI(3) 4, 5

Fitch

(Pโ€Šโ†’โ€ŠQ), (Pโ€Šโ†’โ€ŠยฌQ) โŠข ยฌP
1Pโ€Šโ†’โ€ŠQ
2Pโ€Šโ†’โ€ŠยฌQ
3P
4Q โ†’E 1, 3
5ยฌQ โ†’E 2, 3
6โŠฅ ยฌE 4, 5
7ยฌP ยฌI 3โ€“6

Hypothetical Syllogism (HS)

Lemmon

(Pโ€Šโ†’โ€ŠQ), (Qโ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€ŠR)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. Qโ€Šโ†’โ€ŠR A
3 3. P A for โ†’I
1, 3 4. Q โ†’E 1, 3
1, 2, 3 5. R โ†’E 2, 4
1, 2 6. Pโ€Šโ†’โ€ŠR โ†’I(3) 3, 5

Fitch

1Pโ€Šโ†’โ€ŠQ
2Qโ€Šโ†’โ€ŠR
3P
4Q โ†’E 1, 3
5R โ†’E 2, 4
6Pโ€Šโ†’โ€ŠR โ†’I 3โ€“5

Negated Conditional (ยฌโ†’)

Lemmon

ยฌ(Pโ€Šโ†’โ€ŠQ) โŠข (Pโ€Š&โ€ŠยฌQ)
Assumption Set Line # Formula Annotation
1 1. ยฌ(Pโ€Šโ†’โ€ŠQ) A
2 2. ยฌ(Pโ€Š&โ€ŠยฌQ) A for RAA
3 3. P A for โ†’I
4 4. ยฌQ A for ยฌI
3, 4 5. Pโ€Š&โ€ŠยฌQ &I 3, 4
2, 3 6. Q RAA(4) 2, 5
2 7. Pโ€Šโ†’โ€ŠQ โ†’I(3) 3, 6
1 8. Pโ€Š&โ€ŠยฌQ RAA(2) 1, 7
(Pโ€Š&โ€ŠยฌQ) โŠข ยฌ(Pโ€Šโ†’โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. Pโ€Š&โ€ŠยฌQ A
1 2. P &E 1
1 3. ยฌQ &E 1
2 4. Pโ€Šโ†’โ€ŠQ A for ยฌI
1, 2 5. Q โ†’E 2, 4
1 6. ยฌ(Pโ€Šโ†’โ€ŠQ) ยฌI(4) 3, 5

Fitch

ยฌ(Pโ€Šโ†’โ€ŠQ) โŠข (Pโ€Š&โ€ŠยฌQ)
1ยฌ(Pโ€Šโ†’โ€ŠQ)
2ยฌ(Pโ€Š&โ€ŠยฌQ)
3P
4ยฌQ
5Pโ€Š&โ€ŠยฌQ &I 3, 4
6โŠฅ ยฌE 2, 5
7Q IP 4โ€“6
8Pโ€Šโ†’โ€ŠQ โ†’I 3โ€“7
9โŠฅ ยฌE 1, 8
10Pโ€Š&โ€ŠยฌQ IP 2โ€“9
(Pโ€Š&โ€ŠยฌQ) โŠข ยฌ(Pโ€Šโ†’โ€ŠQ)
1Pโ€Š&โ€ŠยฌQ
2P &E 1
3ยฌQ &E 1
4Pโ€Šโ†’โ€ŠQ
5Q โ†’E 2, 4
6โŠฅ ยฌE 3, 5
7ยฌ(Pโ€Šโ†’โ€ŠQ) IP 4โ€“6

Negated Biconditional (ยฌโ†”๏ธŽ)

Lemmon

ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข ((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ))
Assumption Set Line # Formula Annotation
1 1. ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ) A
2 2. ยฌ((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ)) A for RAA
3 3. ยฌ(Pโ€Š&โ€ŠยฌQ) A for RAA
2, 3 4. ยฌPโ€Š&โ€ŠQ โˆจE 2, 3
2, 3 5. Q &E 4
7 6. P A for โ†’I
2, 3 7. Pโ€Šโ†’โ€ŠQ โ†’I(6) 5, 6
8 8. ยฌ(ยฌPโ€Š&โ€ŠQ) A for RAA
2, 8 9. Pโ€Š&โ€ŠยฌQ โˆจE 2, 8
2, 8 10. P &E 9
13 11. Q A for โ†’I
2, 8 12. Qโ€Šโ†’โ€ŠP โ†’I(11) 10, 11
2, 3, 8 13. Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 7, 12
1, 2, 3 14. ยฌPโ€Š&โ€ŠQ RAA(8) 1, 13
1, 2, 3 15. Pโ€Š&โ€ŠยฌQ โˆจE 2, 14
1, 2 16. Pโ€Š&โ€ŠยฌQ RAA(3) 3, 15
1, 2 17. (Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ) โˆจI 16
1 18. (Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ) RAA(2) 2, 17
((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ)) โŠข ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ)) A
2 2. Pโ€Šโ†”๏ธŽโ€ŠQ A for ยฌI
2 3. (Pโ€Šโ†’โ€ŠQ)โ€Š&โ€Š(Qโ€Šโ†’โ€ŠP) โ†”๏ธŽE 2
2 4. Pโ€Šโ†’โ€ŠQ &E 3
2 5. Qโ€Šโ†’โ€ŠP &E 3
6 6. Pโ€Š&โ€ŠยฌQ A for ยฌI
6 7. P &E 6
6 8. ยฌQ &E 6
2, 6 9. Q โ†”๏ธŽE 4, 7
2 10. ยฌ(Pโ€Š&โ€ŠยฌQ) ยฌI(6) 8, 9
1, 2 11. ยฌPโ€Š&โ€ŠQ โˆจE 1, 10
1, 2 12. ยฌP &E 11
1, 2 13. Q &E 11
1, 2 14. P โ†”๏ธŽE 5, 13
2 15. ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ) ยฌI(2) 12, 14

Fitch

ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข ((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ))
1ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ)
2ยฌ((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ))
3ยฌ(Pโ€Š&โ€ŠยฌQ)
4ยฌ(ยฌPโ€Š&โ€ŠQ)
5P
6ยฌQ
7Pโ€Š&โ€ŠยฌQ &I 5, 6
8โŠฅ ยฌE 3, 7
9Q IP 6โ€“8
10Q
11ยฌP
12ยฌPโ€Š&โ€ŠQ &I 10, 11
13โŠฅ ยฌE 4, 12
14P IP 11, 13
15Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 5โ€“9, 10โ€“14
16โŠฅ ยฌE 1, 15
17ยฌPโ€Š&โ€ŠQ IP 4โ€“16
18(Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ) โˆจI 17
19โŠฅ ยฌE 2, 18
20Pโ€Š&โ€ŠยฌQ IP 3โ€“19
21(Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ) โˆจI 20
22โŠฅ ยฌE 2, 21
23(Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ) IP 2โ€“22
((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ)) โŠข ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ)
1((Pโ€Š&โ€ŠยฌQ)โ€Šโˆจโ€Š(ยฌPโ€Š&โ€ŠQ))
2Pโ€Šโ†”๏ธŽโ€ŠQ
3Pโ€Š&โ€ŠยฌQ
4P &E 3
5ยฌQ &E 3
6Q โ†”๏ธŽE 2, 4
7โŠฅ ยฌE 5, 6
8ยฌ(Pโ€Š&โ€ŠยฌQ) IP 3โ€“7
9ยฌPโ€Š&โ€ŠQ โˆจE 1, 8
10ยฌP &E 9
11Q &E 9
12P โ†”๏ธŽE 2, 11
13โŠฅ ยฌE 10, 12
14ยฌ(Pโ€Šโ†”๏ธŽโ€ŠQ) IP 2โ€“13

Conditional Contraposition (Con)

Lemmon

(Pโ€Šโ†’โ€ŠQ) โŠข (ยฌQโ€Šโ†’โ€ŠยฌP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. ยฌQ A for โ†’I
3 3. P A for ยฌI
1, 3 4. Q โ†’E 1, 3
1, 2 5. ยฌP ยฌI(3) 2, 4
1 6. ยฌQโ€Šโ†’โ€ŠยฌP โ†’I(2) 2, 5
(ยฌQโ€Šโ†’โ€ŠยฌP) โŠข (Pโ€Šโ†’โ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌQโ€Šโ†’โ€ŠยฌP A
2 2. P A for โ†’I
3 3. ยฌQ A for RAA
1, 3 4. ยฌP โ†’E 1, 3
1, 2 5. Q RAA(3) 2, 4
1 6. Pโ€Šโ†’โ€ŠQ โ†’I(2) 2, 5

Fitch

(Pโ€Šโ†’โ€ŠQ) โŠข (ยฌQโ€Šโ†’โ€ŠยฌP)
1Pโ€Šโ†’โ€ŠQ
2ยฌQ
3P
4Q โ†’E 1, 3
5โŠฅ ยฌE 2, 4
6ยฌP ยฌI 3โ€“5
7ยฌQโ€Šโ†’โ€ŠยฌP โ†’I 2โ€“6
(ยฌQโ€Šโ†’โ€ŠยฌP) โŠข (Pโ€Šโ†’โ€ŠQ)
1ยฌQโ€Šโ†’โ€ŠยฌP
2P
3ยฌQ
4ยฌP โ†’E 1, 3
5โŠฅ ยฌE 2, 4
6Q IP 3โ€“5
7Pโ€Šโ†’โ€ŠQ โ†’I 2โ€“6

Biconditional Contraposition (BiCon)

Lemmon

(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP)
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
1 2. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1
1 3. Qโ€Šโ†’โ€ŠP โ†”๏ธŽE 1
4 4. ยฌQ A for โ†’I
5 5. P A for ยฌI
1, 5 6. Q โ†’E 2, 5
1, 4 7. ยฌP ยฌI(5) 4, 6
1 8. ยฌQโ€Šโ†’โ€ŠยฌP โ†’I(4) 4, 7
9 9. ยฌP A for โ†’I
10 10. Q A for ยฌI
1, 10 11. P โ†’E 3, 10
1, 9 12. ยฌQ ยฌI(10) 9, 11
1 13. ยฌPโ€Šโ†’โ€ŠยฌQ โ†’I(9) 9, 12
1 14. ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP โ†”๏ธŽI 8, 13
(ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP) โŠข (Pโ€Šโ†”๏ธŽโ€ŠQ)
Assumption Set Line # Formula Annotation
1 1. ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP A
1 2. ยฌQโ€Šโ†’โ€ŠยฌP โ†”๏ธŽE 1
1 3. ยฌPโ€Šโ†’โ€ŠยฌQ โ†”๏ธŽE 1
4 4. P A for โ†’I
5 5. ยฌQ A for RAA
1, 5 6. ยฌP โ†’E 2, 5
1, 4 7. Q RAA(5) 4, 6
1 8. Pโ€Šโ†’โ€ŠQ โ†’I(4) 4, 7
9 9. Q A for โ†’I
10 10. ยฌP A for RAA
1, 10 11. ยฌQ โ†’E 3, 10
1, 9 12. P ยฌI(10) 9, 11
1 13. Qโ€Šโ†’โ€ŠP โ†’I(9) 9, 12
1 14. Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 8, 13

Fitch

(Pโ€Šโ†”๏ธŽโ€ŠQ) โŠข (ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP)
1Pโ€Šโ†”๏ธŽโ€ŠQ
2ยฌQ
3P
4Q โ†”๏ธŽE 1, 3
5โŠฅ ยฌE 2, 4
6ยฌP ยฌI 3โ€“5
7ยฌP
8Q
9P โ†”๏ธŽE 1, 8
10โŠฅ ยฌE 7, 9
11ยฌQ ยฌI 8โ€“10
12ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP โ†”๏ธŽI 2โ€“6, 7โ€“11
(ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP) โŠข (Pโ€Šโ†”๏ธŽโ€ŠQ)
1ยฌQโ€Šโ†”๏ธŽโ€ŠยฌP
2P
3ยฌQ
4ยฌP โ†”๏ธŽE 1, 3
5โŠฅ ยฌE 2, 4
6Q IP 3โ€“5
7Q
8ยฌP
9ยฌQ โ†”๏ธŽE 1, 8
10โŠฅ ยฌE 7, 9
11P ยฌI 8โ€“10
12Pโ€Šโ†”๏ธŽโ€ŠQ โ†”๏ธŽI 2โ€“6, 7โ€“11

Modus Tollens (MT)

Lemmon

(Pโ€Šโ†’โ€ŠQ), ยฌQ โŠข ยฌP
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. ยฌQ A
3 3. P A for ยฌI
1, 3 4. Q โ†’E 1, 3
1, 2 5. ยฌP ยฌI(3) 2, 4
(ยฌPโ€Šโ†’โ€ŠQ), ยฌQ โŠข P
Assumption Set Line # Formula Annotation
1 1. ยฌPโ€Šโ†’โ€ŠQ A
2 2. ยฌQ A
3 3. ยฌP A for ยฌI
1, 3 4. Q โ†’E 1, 3
1, 2 5. P RAA(3) 2, 4
(Pโ€Šโ†’โ€ŠยฌQ), Q โŠข ยฌP
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠยฌQ A
2 2. Q A
3 3. P A for ยฌI
1, 3 4. ยฌQ โ†’E 1, 3
1, 2 5. ยฌP ยฌI(3) 2, 4
(ยฌPโ€Šโ†’โ€ŠยฌQ), Q โŠข P
Assumption Set Line # Formula Annotation
1 1. ยฌPโ€Šโ†’โ€ŠยฌQ A
2 2. Q A
3 3. ยฌP A for ยฌI
1, 3 4. ยฌQ โ†’E 1, 3
1, 2 5. P RAA(3) 2, 4

Fitch

(Pโ€Šโ†’โ€ŠQ), ยฌQ โŠข ยฌP
1Pโ€Šโ†’โ€ŠQ
2ยฌQ
3P
4Q โ†’E 1, 3
5โŠฅ ยฌE 2, 4
6ยฌP IP 3โ€“5
(ยฌPโ€Šโ†’โ€ŠQ), ยฌQ โŠข P
1ยฌPโ€Šโ†’โ€ŠQ
2ยฌQ
3ยฌP
4Q โ†’E 1, 3
5โŠฅ ยฌE 2, 4
6P IP 3โ€“5
(Pโ€Šโ†’โ€ŠยฌQ), Q โŠข ยฌP
1Pโ€Šโ†’โ€ŠยฌQ
2Q
3P
4ยฌQ โ†’E 1, 3
5โŠฅ ยฌE 2, 4
6ยฌP IP 3โ€“5
(ยฌPโ€Šโ†’โ€ŠยฌQ), Q โŠข P
1ยฌPโ€Šโ†’โ€ŠยฌQ
2Q
3ยฌP
4ยฌQ โ†’E 1, 3
5โŠฅ ยฌE 2, 4
6P IP 3โ€“5

Biconditional Ponens (BP)

Lemmon

(Pโ€Šโ†”๏ธŽโ€ŠQ), P โŠข Q
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
2 2. P A
1, 2 3. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1, 2
1, 2 4. Q โ†’E 2, 3
(Pโ€Šโ†”๏ธŽโ€ŠQ), Q โŠข P
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
2 2. Q A
1, 2 3. Qโ€Šโ†’โ€ŠP โ†”๏ธŽE 1, 2
1, 2 4. P โ†’E 2, 3

Fitch

(Pโ€Šโ†”๏ธŽโ€ŠQ), P โŠข Q
1Pโ€Šโ†”๏ธŽโ€ŠQ
2P
3Q โ†”๏ธŽE 1, 2
(Pโ€Šโ†”๏ธŽโ€ŠQ), Q โŠข P
1Pโ€Šโ†”๏ธŽโ€ŠQ
2Q
3P โ†”๏ธŽE 1, 2

Biconditional Tollens (BT)

Lemmon

(Pโ€Šโ†”๏ธŽโ€ŠQ), ยฌQ โŠข ยฌP
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
2 2. ยฌQ A
1 3. Pโ€Šโ†’โ€ŠQ โ†”๏ธŽE 1
4 4. P A for RAA
1, 4 5. Q โ†’E 3, 4
1, 2 6. ยฌP RAA(4) 2, 5
(Pโ€Šโ†”๏ธŽโ€ŠQ), ยฌP โŠข ยฌQ
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†”๏ธŽโ€ŠQ A
2 2. ยฌP A
1 3. Qโ€Šโ†’โ€ŠP โ†”๏ธŽE 1
4 4. Q A for RAA
1, 4 5. P โ†’E 3, 4
1, 2 6. ยฌQ RAA(4) 2, 5

Fitch

(Pโ€Šโ†”๏ธŽโ€ŠQ), ยฌQ โŠข ยฌP
1Pโ€Šโ†”๏ธŽโ€ŠQ
2ยฌQ
3P
4Q โ†”๏ธŽE 1
5โŠฅ ยฌE 2, 5
6ยฌP IP 3โ€“5
(Pโ€Šโ†”๏ธŽโ€ŠQ), ยฌP โŠข ยฌQ
1Pโ€Šโ†”๏ธŽโ€ŠQ
2ยฌP
3Q
4P โ†”๏ธŽE 1
5โŠฅ ยฌE 2, 5
6ยฌQ IP 3โ€“5

Import (Imp)

Lemmon

(Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR)) โŠข ((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR)
Assumption Set Line # Formula Annotation
1 1 Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR) A
2 2 Pโ€Š&โ€ŠQ A for โ†’I
2 3 P &E 2
2 4 Q &E 2
1, 2 5 Qโ€Šโ†’โ€ŠR โ†’E 1, 3
1, 2 6 R โ†’E 4, 5
1 7 (Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR โ†’I(2) 2, 6

Fitch

(Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR)) โŠข ((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR)
1Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR)
2Pโ€Š&โ€ŠQ
3P &E 2
4Q &E 2
5Qโ€Šโ†’โ€ŠR โ†’E 1, 3
6R โ†’E 4, 5
7(Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR โ†’I 2โ€“6

Export (Exp)

Lemmon

((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR))
Assumption Set Line # Formula Annotation
1 1 (Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR A
2 2 P A for โ†’I
3 3 Q A for โ†’I
2, 3 4 Pโ€Š&โ€ŠQ &I 2, 3
1, 2, 3 5 R โ†’E 1, 4
1, 2 6 Qโ€Šโ†’โ€ŠR โ†’I(3) 3, 5
1 7 Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR) โ†’I(2) 2, 6

Fitch

((Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR) โŠข (Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR))
1(Pโ€Š&โ€ŠQ)โ€Šโ†’โ€ŠR
2P
3Q
4Pโ€Š&โ€ŠQ &I 2, 3
5R โ†’E 1, 4
6Qโ€Šโ†’โ€ŠR โ†’I 3โ€“5
7Pโ€Šโ†’โ€Š(Qโ€Šโ†’โ€ŠR) โ†’I 2โ€“6

Special Dilemma (SpecD)

Lemmon

(Pโ€Šโ†’โ€ŠQ), (ยฌPโ€Šโ†’โ€ŠQ) โŠข Q
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโ†’โ€ŠQ A
2 2. ยฌPโ€Šโ†’โ€ŠQ A
3 3. ยฌQ A for RAA
4 4. P A for ยฌI
1, 4 5. Q โ†’E 1, 4
1, 3 6. ยฌP ยฌI(4) 3, 5
1, 2, 3 7. Q โ†’E 2, 6
1, 2 8. Q IP(3) 3, 7

Fitch

(Pโ€Šโ†’โ€ŠQ), (ยฌPโ€Šโ†’โ€ŠQ) โŠข Q
1Pโ€Šโ†’โ€ŠQ
2ยฌPโ€Šโ†’โ€ŠQ
3ยฌQ
4P
5Q โ†’E 1, 4
6โŠฅ ยฌE 3, 5
7ยฌP ยฌI 4โ€“6
8Q โ†’E 2, 7
9โŠฅ ยฌE 3, 8
10Q IP 3โ€“9

Simple Dilemma (SD)

Lemmon

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠR) โŠข R
Assumption Set Line # Formula Annotation
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. Pโ€Šโ†’โ€ŠR A
3 3. Qโ€Šโ†’โ€ŠR A
4 4. ยฌR A for RAA
5 5. P A for ยฌI
2, 5 6. R โ†’E 2, 5
2, 4 7. ยฌP ยฌI(5) 4, 6
1, 2, 4 8. Q โˆจE 1, 7
1, 2, 3, 4 9. R โ†’E 3, 8
1, 2, 3 10. R RAA(4) 4, 9

Fitch

1Pโ€Šโˆจโ€ŠQ
2 Pโ€Šโ†’โ€ŠR
3Qโ€Šโ†’โ€ŠR
4P
5R โ†’E 2, 4
6Q
7R โ†’E 3, 6
8R โˆจE 1, 4โ€“5 6โ€“7

Complex Dilemma (CD)

Lemmon

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠS) โŠข (Rโ€Šโˆจโ€ŠS)
1 1. Pโ€Šโˆจโ€ŠQ A
2 2. Pโ€Šโ†’โ€ŠR A
3 3. Qโ€Šโ†’โ€ŠS A
4 4. ยฌ(Rโ€Šโˆจโ€ŠS) A for RAA
5 5. P A for ยฌI
2, 5 6. R โ†’E 2, 5
2, 5 7. Rโ€Šโˆจโ€ŠS โˆจI 6
2, 4 8. ยฌP ยฌI(5) 4, 7
1, 2, 4 9. Q โˆจE 1, 8
1, 2, 3, 4 10. S โ†’E 3, 9
1, 2, 3, 4 11. Rโ€Šโˆจโ€ŠS โˆจI 10
1, 2, 3 12. Rโ€Šโˆจโ€ŠS RAA(4) 4, 11

Fitch

(Pโ€Šโˆจโ€ŠQ), (Pโ€Šโ†’โ€ŠR), (Qโ€Šโ†’โ€ŠS) โŠข (Rโ€Šโˆจโ€ŠS)
1Pโ€Šโˆจโ€ŠQ
2Pโ€Šโ†’โ€ŠR
3Qโ€Šโ†’โ€ŠS
4P
5R โ†’E 2, 4
6Rโ€Šโˆจโ€ŠS โˆจI 5
7Q
8S โ†’E 3, 7
9Rโ€Šโˆจโ€ŠS โˆจI 8
10Rโ€Šโˆจโ€ŠS โˆจE 1, 4โ€“6, 7โ€“8

Ex Falso Quodlibet (EFQ)

Lemmon

P, ยฌP โŠข Q
Assumption Set Line # Formula Annotation
1 1. P A
2 2. ยฌP A
1 3. Pโ€Šโˆจโ€ŠQ โˆจI 1
1, 2 4. Q โˆจE 2, 3

Fitch

P, ยฌP โŠข Q
1P
2ยฌP
3โŠฅ ยฌE 1, 2
4Q X 3